Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.
A. because you haven't released the object so therefor the potential gravity force applied becomes actual when released.
Substances have different tendencies to donate or accept electrons. When a really good donor meets a great acceptor, the chemical reaction releases a lot of energy. Oxygen (O2) is the best electron acceptor and is used in many aerobic reactions (reactions with oxygen). Hydrogen gas (H2) is a good electron donor.
When O2 and H2 are combined, along with a catalyst, water (H2O) is formed. This example of a redox reaction can be written like this:

Answer:
180º
Explanation:
Carbon has 4 valence electrons and to complete the octet requires 4 more , so it will share with the oxigen atoms 4 more, forming a single and a pi bond similar to CO2
Since the carbon does not have lone pairs, the geometry around this central atom will be linear and the angle will be 180 , S = C = S