Answer:
The minimum molecular weight of the enzyme is 29.82 g/mol
Explanation:
<u>Step 1:</u> Given data
The volume of the solution = 10 ml = 10*10^-3L
Molarity of the solution = 1.3 mg/ml
moles of AgNO3 added = 0.436 µmol = 0.436 * 10^-3 mmol
<u>Step 2:</u> Calculate the mass
Density = mass/ volume
1.3mg/mL = mass/ 10.0 mL
mass = 1.3mg/mL *10.0 mL = 13mg
<u>Step 3:</u> Calculate minimum molecular weight
Molecular weight = mass of the enzyme / number of moles
Molecular weight of the enzyme = 13mg/ 0.436 * 10^-3 mmol
Molecular weight = 29.82 g/mole
The minimum molecular weight of the enzyme is 29.82 g/mol
Answer:
To obtain the grams of fat that the ground round has, knowing that it weighs 1.33 pounds we must pass this value to grams. Since 1 pound equals 453.59 grams, 1.33 pounds equals 603.27 (453.59 x 1.33).
Now, to obtain 29 percent of 603.27, we must make the following calculation: 603.27 / 100 x 29, which gives a total of 174.94 grams.
In this way, your reasoning is correct and it is probably a mistake in the book.
The overall balanced
chemical reaction for this is:
Detonation of
Nirtoglycerin <span>
4 C3H5N3O9 --> 12 CO2 + 6 N2 + O2 + 10 H2O </span>
Therefore:
2.00 mL x 1.592 g/mL =
3.184 g <span>
3.184 g / 227.1 /mol = 0.0140 mol nitroglycerin
4 moles --> 12 + 6 + 1 + 10 = 29 moles of gas
<span>0.0140 mol x (29/4) = 0.1017 moles of gases or (0.102 mol) </span></span>
Answer:
1H2S + 2Ag --> 1Ag2S + 1H2
Explanation:
1H2S + 2Ag --> 1Ag2S + 1H2
You only have to make sure to have the same amount of each element in each side of your chemical equation