The average speed :
1. 10.44 m/s
2. 10.42 m/s
3. 9.26 m/s
The distance 100 m have the greatest average speed
<h3>Further explanation
</h3>
Given
Distance and time of runner
Required
Average speed
Solution
<em>
Average speed : total distance : total time
</em>
1. d = 100 m, t = 9.58 s
Average speed : 100 : 9.58 = 10.44 m/s
2. d=200 m, t=19.19 s
Average speed : 200 : 19.19 = 10.42 m/s
3. d=400 m, t = 43.18 s
Average speed : 400 : 43.18 = 9.26 m/s
The distance 100 m have the greatest average speed
n = 1.5atm (15L) / .0821 (280k) = .98 mol NaCl
NaCl = 22.99g Na + 35.45g Cl = 58.44g NaCl
58.44g NaCl x .98 mol NaCl = 57.27g NaCl
Explanation:
hope you get it right :)
Explanation:
The given data is as follows.
Thickness (dx) = 0.87 m, thermal conductivity (k) = 13 W/m-K
Surface area (A) = 5
, 
According to Fourier's law,
Q = 
Hence, putting the given values into the above formula as follows.
Q = 
= 
= 5902.298 W
Therefore, we can conclude that the rate of heat transfer is 5902.298 W.
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
= 2.25 mol of chlorine
= 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly
.
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be
.
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6
Answer:
Large temperature and air pressure decrease.
Temperature and air pressure increase.
Explanation: