Elastic potential energy is given by formula

here we know that


Now using above formula we have


So elastic potential energy in the chord is 14400 J
In order to solve this problem, we will first need to find the electric field at the origin without the 3rd charge
E1 = (9x10^9)(13.4x10^-9)/(9.4x10^-2)^2 = 13648.7 V/m towards the negative y-axis
E2 = (9x10^9)(4.23x10^-9)/(4.99x10^-2)^2 = 15289.1 V/m towards the positive x-axis
The red arrow shows the direction of which the electric field points.
To make the electric field at the origin 0, we must find a location where q3 = the magnitude of q1 and q2
Etotal = sqrt(E1+E2) = 20494.97 V/m
E3 = 20494.97 = (9x10^9)(14.23x10^-9)/(d)^2
d = 0.079 m = 7.9 cm
The forces acting on the elevator are:
Gravity force
Tension force
Air resistance
Explanation:
Let's go through each of the forces listed and see which ones are acting on the elevator.
- Normal force: NO. The normal force is a force exerted by a surface whenever there is another object "pushing" on it. For instance, when a box is at rest on a table, the box is "pushing" on the table (due to its weight), and the table "pushes back" on the box, upward, in order to balance its weight: this is the normal force. In this case, the elevator is lifted, so it is not pushing on anything, therefore there is no normal force.
- Gravity force: YES. The force of gravity acts on every object located in the gravitational field of the Earth; it pulls downward, and its magnitude is
, where m is the mass of the object and g is the acceleration of gravity. - Applied force: NO. Here there is no applied force, since there is nobody "pushing" or "pulling" the elevator.
- Friction force: NO. As we are considering the forces on the elevator, and the elevator is not sliding against any surfaces, there is no force of friction. (The force of friction acts whenever there are two surfaces sliding against each other, which is not the case here)
- Tension force: YES. The tension force is the force exerted by a rope or a string when pulling an object. In this case, there are four ropes pulling the elevator, therefore there are 4 forces of tension acting on the elevator, upward.
- Air resistance: YES. As the elevator is moving through the air, the interaction between the molecules of air with the surface of the elevator produces a force (called air resistance) that "resists" the motion of the elevator, therefore pushing downward. However, the magnitude of this force is negligible in this case.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
A satellite is a body that revolves around another larger body. Where the larger body has a stronger gravitational pull on the smaller body, keeping it in orbit. Thus the moon is the satellite of the Earth is a good example of this.
<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.