Answer:
Convective zone, chromosphere, corona
Explanation:
A star like the Sun is divided into different layers according to pressure, density, temperature, and the mechanics of energy transport (in the case of the convective zone and radiative zone) for each of those layers.
In stars, there is an equilibrium between two forces, the force of gravity in the inward direction due to their own mass and the radiation pressure in the upward direction as a consequence of the nuclear reaction in their core, that is known as hydrostatic equilibrium.
That leads to different layers according with the properties described above.
Near the core, in the Sun, there is a radiative zone since radiation is the best mechanism of energy transport in this area. Then, in the next layer, it can be found that convection becomes a more efficient way of energy transport that radiation due to the fact that the inner part of the convection zone is at a greater temperature than the outer one.
Finally, there is the atmosphere of the Sun (chromosphere, photosphere, and corona).
Key terms:
Convection: Transport of energy due to different in density and temperature of a material (liquid, gas).
The answer is 2.93m (to 2 dp)
Answer:
The value is 
Explanation:
From the question we are told that
The current is 
The radius is 
The length of the wire is
\
The resistance is 
The outer surface temperature is 
The average thermal conductivity is 
Generally the heat generated in the stainless steel wire is mathematically represented as


=> 
=> 
Generally the middle temperature is mathematically represented as



Answer:
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Explanation:
The average speed is defined by the variation of the position between the time spent
v = Δx / Δt
since the position is a vector we must add using vectors, we will assume that the displacement to the right is positive, the total displacement is
Δx = 20 - 15 +20
Δx = 25 m
therefore we calculate
v = 25/75
v = 1/3 m / s = 0.333 m / s
in the direction of the truck
Answer:
C. Constant
Explanation:
The total energy of the cannonball remains constant as it travels through the air.