Answer:
both
Explanation:
because when it is hot in summer 5hat is the air and the sund u can warm things up and then it get hot
Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
W = force * displacement
W = 32 pounds * 10 feet
Now you need to convert it to newton and meters
W = 142 N * 3.048 m = 434 J
(I approximated the conversions- I hope it helps)
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
Answer:
Static stretching is the answer.
Explanation:
Static stretching is the most common form that greatly improves flexibility. However, static stretches does little to contract the muscles needed to generate powerful golf swings. Dynamic stretches help improve your range of motion while reducing muscle stiffness.