Answer:
-Histamine binds extracellularly to the H1 receptor.
-When histamine binds to the H1 receptor. the receptor undergoes a conformation change and binds the inactive G protein.
-Once the G protein is active, it binds to the enzyme phospholipase C, activating it.
-Histamine is likely hydrophilic.
When histamine encounters a target cell, it binds extracellularly to the H1 receptor, causing a change in the shape of the receptor. This change in shape allows the G protein to bind to the H1 receptor, causing a GTP molecule to displace a GDP molecule and activating the G protein. The active G protein dissociates from the H1 receptor and binds to the enzyme phospholipase C, activating it. The active phospholipase C triggers a cellular response. The G protein then functions as a GTPase and hydrolyzes the GTP to GDP. The G protein dissociates from the enzyme and is inactive again and ready for reuse.
Explanation:
Answer:
adapting can be learning from your environment and ways to survive etc.
Adapting can also go to sexual reproduction to survive diseases unlike asexual reproduction.
Actually, the hormone is issued by the gland to go to a certain spot in the body. Like the adrenal glands release the hormone "adrenaline" when you're in a dangerous, or stimulating situation
Answer: Bacteria can live in hotter and colder temperatures than humans, but they do best in a warm, moist, protein-rich environment that is pH neutral or slightly acidic. There are exceptions, however. Some bacteria thrive in extreme heat or cold, while others can survive under highly acidic or extremely salty conditions.