Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42
T = 14400 s
26.5 x 14400=381600 C
381600/96500=3.95 Faradays
Cu2+ + 2e- = Cu
3.95 faradays ( 1 mol/ 2 Faradays) = 1.97
mass = 1.97 x 63.55 g/mol=125 g
moles Au = 33.1 / 196.967 g/mol=0.168
Au+ + 1e- = Au
0.168 ( 1 Faraday/ 1mol)= 0.168 Faraday
0.168 x 96500=16217 Coulombs
16217 / 5.00=3243 s => 54 min
Answer:
STP stands for Standard Temperature and Pressure. NTP stands for Normal Temperature and Pressure.
Explanation:
STP is set by the IUPAC as 0°C and 100 kPa or 1 bar.
NTP is set at 101.325 kPa but uses 20°C as the temperature
Answer:
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
When a substance burns we talk about a combustion reaction. When combustion is complete the products are carbon dioxide and water, like in this case. The equation is:
C₄H₁₀(l) + O₂(g) ⇄ CO₂(g) + H₂O(g)
First, we balance the element with the largest stoichiometric coefficient (C).
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + H₂O(g)
Then, we balance H because it is in just 1 compound on each side.
C₄H₁₀(l) + O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Finally, we balance O.
C₄H₁₀(l) + 6.5 O₂(g) ⇄ 4 CO₂(g) + 5 H₂O(g)
Since we want the smallest whole numbers, we multiply all coefficients by 2.
2 C₄H₁₀(l) + 13 O₂(g) ⇄ 8 CO₂(g) + 10 H₂O(g)
Explanation:
1.A physical property is an aspect of matter that can be seen or measured without changing its chemical composition. Examples of physical properties include color, molecular weight, and volume.
A chemical property is observed only by changing the chemical identity of a substance. In other words, the only way to detect a chemical is to perform a chemical reaction.
2.This property measures the ability of chemical change. Examples of chemical properties are reactivity, flammability, and oxidation state.
The physical properties of a substance do not involve any chemical reaction. These include density, color, mass, hardness, freezing points, electrical properties, and the like.
Chemical properties include the reaction of chemicals with other substances. These reactions lead to the disappearance of the raw material and the appearance of new materials that have different physical and chemical properties.
3.Chemical properties can be compared to physical properties; On the contrary, they are recognizable without changing the structure of matter. However, for many properties in the field of physical chemistry and other disciplines at the boundary between chemistry and physics, the distinction can be a matter for the researcher's point of view. The properties of materials, both physical and chemical, can be seen as metaphysical; This means that it is secondary to the principle of tangible reality. Multiple metamorphic layers are also possible.