<span>The part of making a solution that always releases energy is the overall change in forming the solution. The answer is letter D. Although letters A, B and C can be viable answers but, it is not always the case. There are some substances that when you mix or separate them requires more energy or less energy. An example would be w</span>hen the formation (or enthalpy of formation) of carbon
dioxide is negative, it means that it releases heat to the surroundings. When
it releases heat to the surroundings, the reaction is exothermic. Another example is when you mix baking soda and muriatic acid, the resulting mixture is colder. When it is cold, it means that the reaction is endothermic. So the best answer is letter D.
Answer:
For n=3 and l=1=p
It is 3p-orbital.
Magnetic quantum number m
l
have values from -l to +l and total of 2l+1 values.
Forl=1, m
l
values are:
m
l
=−1,0,1 for l=1; total m
l
values =3= Number of orbitals
Each orbital can occupy maximum of two electron
Number of electrons =2×3=6
Thus 6 electrons will show same quantum number values of n=3 and l=1.
Number of elements with last electron in 3p orbitals = 6
Anomalous data on a graph would show up as say a very high or very low value which does not fit in with the normal values which may be background values.If it was a straight line graph then the anomalous point would plot well above or below the line or if it was a bar graph ie a histogram it would be much higher or lower than the surrounding data. In mineral exploration, anomalies are looked for in say geophysics or geochemistry data values for high or low magnetism or conductivity or high chemical values indicating the presence of valuable minerals at that point.
Answer:
First of all, it's KNO₃ not KNO.
Second, KNO₃ is neither an acid nor it is a base, infact, it is a salt and therefore it's neutral.
hope that helps...