2 pencils, because that would equal left grams then the others
Answer: 0.43 V
Explanation:
L = [μ(0) * N² * A] / l
Where
L = Inductance of the solenoid
N = the number of turns in the solenoid
A = cross sectional area of the solenoid
l = length of the solenoid
7.3*10^-3 = [4π*10^-7 * 450² * A] / 0.24
1.752*10^-3 = 4π*10^-7 * 202500 * A
1.752*10^-3 = 0.255 * A
A = 1.752*10^-3 / 0.255
A = 0.00687 m²
A = 6.87*10^-3 m²
emf = -N(ΔΦ/Δt).........1
L = N(ΔΦ/ΔI) so that,
N*ΔΦ = ΔI*L
Substituting this in eqn 1, we have
emf = - ΔI*L / Δt
emf = - [(0 - 3.2) * 7.3*10^-3] / 55*10^-3
emf = 0.0234 / 0.055
emf = 0.43 V
Answer:
Tension= 21,900N
Components of Normal force
Fnx= 17900N
Fny= 22700N
FN= 28900N
Explanation:
Tension in the cable is calculated by:
Etorque= -FBcostheta(1/2L)+FT(3/4L)-FWcostheta(L)= I&=0 static equilibrium
FTorque(3/4L)= FBcostheta(1/2L)+ FWcostheta(L)
Ftorque=(Fcostheta(1/2L)+FWcosL)/(3/4L)
Ftorque= 2/3FBcostheta+ 4/3FWcostheta
Ftorque=2/3(1350)(9.81)cos55° + 2/3(2250)(9.81)cos 55°
Ftorque= 21900N
b) components of Normal force
Efx=FNx-FTcos(90-theta)=0 static equilibrium
Fnx=21900cos(90-55)=17900N
Fy=FNy+ FTsin(90-theta)-FB-FW=0
FNy= -FTsin(90-55)+FB+FW
FNy= -21900sin(35)+(1350+2250)×9.81=22700N
The Normal force
FN=sqrt(17900^2+22700^2)
FN= 28.900N