Hey there!
Here is your answer:
<u><em>The proper answer to this question is option C "</em></u><span><u><em>0.00349".</em></u>
Reason:
</span><span><u><em>1 L = 100 cL. Or 1 cL = 0.01 L</em></u>
</span><span><u><em>34.9 cL = 34.9 / 100 L = 0.349 L</em></u>
</span><span><u><em> 1 hL = 100 L. 0.349 L = 0.349 / 100 hL = 0.00349 hL</em></u>
<em>Therefore the answer is option C!</em>
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit</span>
Answer:
I think it is the forth one
Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.
Each hour 430 quintillion Joules of energy from the sun hits the Earth.
In a year it is very hard to determine because of the night and different light levels.