Answer:
L = 130 decibels
Explanation:
The computation of the sound intensity level in decibels is shown below:
According to the question, data provided is as follows
I = sound intensity = 10 W/m^2
I0 = reference level = 
Now
Intensity level ( or Loudness)is




Therefore
L = 13 bel
And as we know that
1 bel = 10 decibels
So,
The Sound intensity level is
L = 130 decibels
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
The depth of focus achievable with those lenses is small.
Explanation:
A larger aperture makes it much harder to focus on more than one object. When using a telephoto lens (the ones the question is referring to), the depth of focus is very small. For example, using a telephoto lens to take a photo of a runner might get the runner in focus, but certainly not the track, or the audience behind them. If you look at photos, especially older photos, of Olympians in almost any sport you can see this.
Hope this helps!
Answer:
Explanation:
An inelastic collision is one where 2 masses collide and stick together, moving as a single mass after the collision occurs. When we talk about this type of momentum conservation, the momentum is conserved always, but the kinetic momentum is not (the velocity changes when they collide). Because there is direction involved here, we use vector addition. The picture before the collision has the truck at a mass of 3520 kg moving north at a velocity of 18.5. The truck's momentum, then, is 3520(18.5) = 65100 kgm/s; coming at this truck is a car of mass 1480 kg traveling east at an unknown velocity. The car's momentum, then, is 1480v. The resulting vector (found when you pick up the car vector and stick the initial end of it to the terminal end of the truck's momentum vector) forms the hypotenuse of a right triangle where one leg is 65100 kgm/s, and the other leg is 1480v. Since we already know the final velocity of the 2 masses after the collision, we can use that to find the final momentum, which will serve as the resultant momentum vector in our equation (we'll get there in a sec). The final momentum of this collision is
p = mv and
p = (3520 + 1480)(13.6) so
p = 68000. Final momentum. The equation for this is a take-off of Pythagorean's Theorem and the one used to find the final magnitude of a resultant vector when you first began your vector math in physics. The equation is
which, in words, is
the final momentum after the collision is equal to the square root of the truck's momentum squared plus the car's momentum squared. Filling in:
and
and
and
and
so
v = 13.3 m/s at 72.6°
False, according to Boyle's law it's pressure increases, volume decreases