Volume<span> of matter </span>decreases<span> under </span>pressure<span> ... -under </span>pressure<span>, the </span>particles<span> in a </span>gas<span> are </span>forced closer together<span> ... </span>factors<span> affecting </span>gas pressure<span> ... -</span>if pressure<span> in a sealed container is </span>lower than<span> outside, </span>gas will<span> rush in ...</span>
It’s the third one because Cl has 17 protons bc of the numeric number and 18 electrons bc it’s always the opposite and 18 neutrons because you subtract 35-17=18
Answer:
The two main variables in an experiment are the independent and dependent variable. An independent variable is the variable that is changed or controlled in a scientific experiment to test the effects on the dependent variable. A dependent variable is the variable being tested and measured in a scientific experiment.
Eta Carinae could be as large as 180 times the radius of the Sun, and its surface temperature is 36,000-40,000 Kelvin. Just for comparison, 40,000 Kelvin is about 72,000 degrees F. So it's the blue hypergiants, like Eta Carinae, which are probably the hottest stars in the Universe.
Answer:

Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.

We are converting 57.3 grams to moles, so we multiply by this value.

Flip the ratio so the units of grams of sodium carbonate cancel.




The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.

There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.