Answer:
The frequency heard by the motorist is 4313.2 Hz.
Explanation:
let f1 be the frequency emited by the police car and f2 be the frequency heard by the motorist, let v1 be the speed of the police car and v2 be the speed of the motorist and v = 343 m/s be the speed of sound.
because the police car is moving towards the motorist at a higher speed, then the motorist will hear a increasing frequency and according to Dopper effect, that frequency is given by:
f1 = [(v + v2/(v - v1))]×(f2)
= [( 343 + 30)/(343 - 36)]×(3550)
= 4313.2 Hz
Therefore, the frequency heard by the motorist is 4313.2 Hz.
Answer:
Amplitude and wavelength
Explanation:
- The amplitude of a wave is the maximum displacement of the wave, measured with respect to the equilibrium position (so, for a water wave it is the maximum height of the wave relative to the equilibrium position)
- The wavelength of a wave is the distance between two consecutive crests (or throughs) of a wave. So, for a water wave, it is the distance between two consecutive waves
Therefore, in the example in the problem we have:
- 2 meters corresponds to the amplitude
- 35 meters corresponds to the wavelength
The RATE of change of position is speed.
Impulse = change in momentum
The answer is 0.