Answer:

Explanation:
From the question we are told that
The electric filed is
Generally according to Gauss law
=> 
Given that the electric field is pointing downward , the equation become

Here
is the excess charge on the surface of the earth
is the surface area of the of the earth which is mathematically represented as

Where r is the radius of the earth which has a value 
substituting values


So

Here
s the permitivity of free space with value

substituting values


Answer:
12+ 18 divide by 2 is the average minutes
The magnetic field at the center of the arc is 4 × 10^(-4) T.
To find the answer, we need to know about the magnetic field due to a circular arc.
<h3>What's the mathematical expression of magnetic field at the center of a circular arc?</h3>
- According to Biot savert's law, magnetic field at the center of a circular arc is
- B=(μ₀ I/4π)× (arc/radius²)
- As arc is given as angle × radius, so
B=( μ₀I/4π)×(angle/radius)
<h3>What will be the magnetic field at the center of a circular arc, if the arc has current 26.9 A, radius 0.6 cm and angle 0.9 radian?</h3>
B=(μ₀ I/4π)× (0.9/0.006)
= (10^(-7)× 26.9)× (0.9/0.006)
= 4 × 10^(-4) T
Thus, we can conclude that the magnitude of magnetic field at the center of the circular arc is 4 × 10^(-4) T.
Learn more about the magnetic field of a circular arc here:
brainly.com/question/15259752
#SPJ4
For each half reaction:
>Balance all except O and H
>Balance O using H2O
>balance H using H+
>balance charge using e-
Then multiply the half reactions to balance the e-
Add them back together
<h2>
Answer:</h2>
In circuits, the average power is defined as the average of the instantaneous power over one period. The instantaneous power can be found as:

So the average power is:

But:

So:

![P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}](https://tex.z-dn.net/?f=P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%28%5Cfrac%7B1%2Bcos%282%5Comega%20t%29%7D%7B2%7D%20%29dt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5Cintop_%7B0%7D%5E%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7Bcos%282%5Comega%20t%29%7D%7B2%7D%5Ddt%20%5C%5C%5C%5CP%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7BT%7D%5B%5Cfrac%7B1%7D%7B2%7D%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B4%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2T%7D%5B%28t%29%5Cright%7C_0%5ET%20%2B%5Cfrac%7Bsin%282%5Comega%20t%29%7D%7B2%5Comega%7D%20%5Cright%7C_0%5ET%5D%20%5C%5C%20%5C%5C%20P%3D%5Cfrac%7Bv_%7Bm%7Di_%7Bm%7D%7D%7B2%7D)
In terms of RMS values:
