They share covalent bonds
Answer:
correct answer is option d (Light emitted by an element produces a unique identifying spectrum.)
Explanation:
Each element has different atomic number and atoms of an element can radiate a certain amount of energy. Different elements have different atomic spectrum and it can be used to determine the composition of a material.
When atoms are excited to higher energy state after some time they came back to lower state by emitting their excess energy in the form of light. This light has certain wavelength. This emitted light can be seen as a series of different colored lines and between two colored lines there is a dark space. This series of colored lines is called a line spectra or atomic spectra.
The answer would be a compound because they are anti-manic metals which are created by two or more elements
Complete question is;
The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?
Answer:
13 m
Explanation:
We are given;
Distance between two nearly parallel mirrors; d = 6.5 m
Distance between the face and the nearer mirror; x = 3 m
Thus, the distance between the back-head and the mirror = 6.5 - 3 = 3.5m
Now, From the given values above and using the law of reflection, we can find the distance of the first reflection of the back of the head of the person in the rear mirror.
Thus;
Distance of the first reflection of the back of the head in the rear mirror from the object head is;
y' = 2y
y' = 2 × 3.5
y' = 7
The total distance of this image from the front mirror would be calculated as;
z = y' + x
z = 7 + 3
z = 10
Finally, the second reflection of this image will be 10 meters inside in the front mirror.
Thus, the total distance of the image of the back of the head in the front mirror from the person will be:
T.D = x + z
T.D = 3 + 10
T.D = 13m
Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275