Usually, it increases the solubility in water.
The speed of the car passing you is 6 m/s while car is moving 6 m/s behind the car.
<h3>Relative velocity of the car</h3>
The speed of the car passing you is determined by applying relative velocity principle as shown below;
Vr = Va - Vb
Vr = 26 m/s - 32 m/s
Vr = -6 m/s
Thus, the speed of the car passing you is 6 m/s while car is moving 6 m/s behind the car.
Learn more about relative velocity here: brainly.com/question/17228388
#SPJ1
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 
The correct answer is decreases
The further away you are the weaker it would be. That's why at one point you stop being in the field and ti doesn't pull you towards it anymore. Proportionally, if you move towards the Earth then it increases.