1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
5

HELP I NEED THIS ANSWERED AS FAST AS POSSIBLE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Physics
1 answer:
WITCHER [35]3 years ago
8 0

Displacement is d  


Vf² = Vi² + 2 g d  


(-20²) = (+10²) + 2 (-9.8) d  


-19.6 d = 300  


d = -15.3 m  


negative means lower


time is t  


d = Vi t + 1/2 g t²



-15.3 = 10 t + (-4.9) t²



4.9 t² - 10 t -15.3 = 0  


t = 3.06 s

Hope this helps -John

You might be interested in
A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
Over [174]

Answer:

minimum angle is 128.69°

Explanation:

given data

player velocity with respect ground v1 = 3.5 m/s

ball velocity with respect himself v2 = 5.6 m/s

to find out

smallest angle

solution

we know ball velocity with respect field will be

ball velocity = v1  +v2

ball velocity = 3.5 + 5.6 = 9.1m/s

we consider angle that player hit ball is θ

then by as per figure triangle

cosθ = \frac{v1}{v2}

cosθ = \frac{3.5}{5.6}

θ = 51.31

so minimum angle is 180 - 51.31 = 128.69°

6 0
3 years ago
A_ is a cut made through the wood
Cloud [144]

Answer:

i believe the answer is B only because i looked it up on g00gle so take what i say with a GRAIN of salt all puns intended

Explanation:

 

6 0
3 years ago
Read 2 more answers
MATHPHYS CAN U HELP ME PLEASE
ludmilkaskok [199]

Explanation:

(1) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.041 kg) (2090 J/kg/°C) (0°C − (-11°C)) = 942.59 J

The heat added to melt the ice is:

q = mL = (0.041 kg) (3.33×10⁵ J/kg) = 13,653 J

The heat added to warm the water to 100°C is:

q = mCΔT = (0.041 kg) (4186 J/kg/°C) (100°C − 0°C) = 17,162.6 J

The heat added to evaporate the water is:

q = mL = (0.041 kg) (2.26×10⁶ J/kg) = 92,660 J

The heat added to warm the steam to 115°C is:

q = mCΔT = (0.041 kg) (2010 J/kg/°C) (115°C − 100°C) = 1236.15 J

The total heat needed is:

q = 942.59 J + 13,653 J + 17,162.6 J + 92,660 J + 1236.15 J

q = 125,654.34 J

(2) When the first two are mixed:

m C₁ (T₁ − T) + m C₂ (T₂ − T) = 0

C₁ (T₁ − T) + C₂ (T₂ − T) = 0

C₁ (6 − 11) + C₂ (25 − 11) = 0

-5 C₁ + 14 C₂ = 0

C₁ = 2.8 C₂

When the second and third are mixed:

m C₂ (T₂ − T) + m C₃ (T₃ − T) = 0

C₂ (T₂ − T) + C₃ (T₃ − T) = 0

C₂ (25 − 33) + C₃ (37 − 33) = 0

-8 C₂ + 4 C₃ = 0

C₂ = 0.5 C₃

Substituting:

C₁ = 2.8 (0.5 C₃)

C₁ = 1.4 C₃

When the first and third are mixed:

m C₁ (T₁ − T) + m C₃ (T₃ − T) = 0

C₁ (T₁ − T) + C₃ (T₃ − T) = 0

(1.4 C₃) (6 − T) + C₃ (37 − T) = 0

(1.4) (6 − T) + 37 − T = 0

8.4 − 1.4T + 37 − T = 0

2.4T = 45.4

T = 18.9°C

(3) Heat gained by the ice = heat lost by the tea

mL + mCΔT = -mCΔT

m (3.33×10⁵ J/kg) + m (2090 J/kg/°C) (30.8°C − 0°C) = -(0.176 kg) (4186 J/kg/°C) (30.8°C − 32.8°C)

m (397372 J/kg) = 1473.472 J

m = 0.004 kg

m = 4 g

4 grams of ice is melted and warmed to the final temperature, which leaves 128 grams unmelted.

(4) The heat added to warm the ice to 0°C is:

q = mCΔT = (0.028 kg) (2090 J/kg/°C) (0°C − (-67°C)) = 3920.84 J

The heat added to melt the ice is:

q = mL = (0.028 kg) (3.33×10⁵ J/kg) = 9324 J

The heat added to warm the melted ice to T is:

q = mCΔT = (0.028 kg) (4186 J/kg/°C) (T − 0°C) = (117.208 J/°C) T

The heat removed to cool the water to T is:

q = -mCΔT = -(0.505 kg) (4186 J/kg/°C) (T − 27°C)

q = (2113.93 J/°C) (27°C − T) = 57076.11 J − (2113.93 J/°C) T

The heat removed to cool the copper to T is:

q = -mCΔT = -(0.092 kg) (387 J/kg/°C) (T − 27°C)

q = (35.604 J/°C) (27°C − T) = 961.308 J − (35.604 J/°C) T

Therefore:

3920.84 J + 9324 J + (117.208 J/°C) T = 57076.11 J − (2113.93 J/°C) T + 961.308 J − (35.604 J/°C) T

13244.84 J + (117.208 J/°C) T = 58037.418 J − (2149.534 J/°C) T

(2266.742 J/°C) T = 44792.58 J

T = 19.8°C

(5) Kinetic energy of the hammer = heat absorbed by ice

KE = q

½ mv² = mL

½ (0.8 kg) (0.9 m/s)² = m (80 cal/g × 4.186 J/cal × 1000 g/kg)

m = 9.68×10⁻⁷ kg

m = 9.68×10⁻⁴ g

(6) Heat rate = thermal conductivity × area × temperature difference / thickness

q' = kAΔT / t

q' = (1.09 W/m/°C) (4.5 m × 9 m) (10°C − 4°C) / (0.09 m)

q' = 2943 W

After 10.7 hours, the amount of heat transferred is:

q = (2943 J/s) (10.7 h × 3600 s/h)

q = 1.13×10⁸ J

q = 113 MJ

6 0
3 years ago
A force gives a 5.0 kg object an acceleration of 2.0 m/s 2. The same force would give a 20 kg object an acceleration of _____. 0
Oksi-84 [34.3K]

m = 5 kg

a = 2 m/s²

to find the force that accelerates the 4 kg object @ 2 m/s²

F = ma = 5 kg x 2 m/s² = 10 N

To find what acceleration 10 N would give a 20 kg object

a = F/m = 10 N/20 kg = 0.5 m/s

6 0
3 years ago
Read 2 more answers
Hiii please help i’ll give brainliest if you give a correct answer please thanks!
True [87]

Answer:

The last one " They are equal and act in opposite directions"

Explanation:

Hope u got it right.

5 0
3 years ago
Other questions:
  • What happens when velocity and acceleration are at right angles to each other
    6·1 answer
  • An object traveling at constant speed v in a circle of radius R has an acceleration am 5 m/s2. If both R and v are doubled, what
    15·1 answer
  • The impedance of an inductor zind is determined to be 147 ohms at 2000 hz and its dc resistance rl is 25 ohms. what would be the
    10·1 answer
  • Explain why the term “nuke it” is incorrect when referring to cooking food
    9·1 answer
  • A 1200-kg SUV is moving alone a straight highway at 12.0 m/s. Another car, with mass 1800 kg and speed 20.0 m/s, has its center
    12·1 answer
  • What are the 2 forms of memory retrieval?
    15·1 answer
  • What does acceleRation measure
    10·1 answer
  • 1. The photon energy for light of wavelength 500 nm is approximately (Show your work).
    9·1 answer
  • A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for
    7·1 answer
  • An object moves with a constant speed of 20 m/s on a circular track of radius 100 m. What is the tangential acceleration of the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!