From the question, The kinetic energy of the fired arrow is equal to the work done by the bale of hale in stopping the arrow.
We make use of the following formula
mv²/2 = F'd................... Equation 1
Where
- m = mass of the arrow
- v = velocity of the arrow
- F' = average stopping force acting on the arrow
- d = distance of penetration
Make F' the subject of the equation
F' = mv²/2d.................. Equation 2
From the question,
Given:
- m = 20 g = 0.02 kg
- v = 60 m/s
- d = 40 cm = 0.4 m
Substitute these values into equation 2
Hence, The average stopping force acting on the arrow is 90 N
Learn more about average stooping force here: brainly.com/question/13370981
Answer: 7.5 rev/s
Explanation:
We are given the angular velocity
a helicopter's main rotor blades:

However, we are asked to express this
in the International Systrm (SI) units. In this sense, the SI unit for time is second (
):


<span>The number of the group identifies the column of the standard periodic table in which the element appears.</span>
Group 1 contains the alkali metals ( lithium<span> (</span>Li<span>), </span>sodium<span> (</span>Na<span>), </span>potassium<span> (</span>K<span>), </span>rubidium<span> (</span>Rb<span>), </span>caesium<span> (</span>Cs<span>), and </span>francium(Fr).)<span>
Group 2 contains the alkaline earth metals (</span> beryllium<span> (</span>Be),magnesium<span> (</span>Mg<span>), </span>calcium<span> (</span>Ca<span>), </span>strontium<span> (</span>Sr<span>), </span>barium<span> (</span>Ba<span>) and </span>radium<span> (</span>Ra<span>) )
Group 3: </span><span> Scandium (Sc) and yttrium (Y) </span>
Answer:
972 J
Explanation:
At the bottom, all the gravitational potential energy was converted into kinetic energy. If you calculate the GPE, its value will be the same that the KE at the bottom. The GPE can be calculated this way:
GPE = mass×gravity×heigth
GPE = 2.2×9.8×45.08 ≈ 972
As these are distances created by moving in a straight line, using a trigonometric analysis can solve the missing single straight-line displacement. Looking at the 48m and 12m movements as legs of a triangle, obtaining the hypotenuse using the pythagorean theorem will yield us the correct answer.
This is shown below:
c^2 = 48^2 + 12^2
c = sqrt(2304 + 144)
c = sqrt(2448)
c = 49.48 m
To obtain the angle at which Anthony walks 49.48, we obtain the arc tangent of (12/48). This is shown below:
arc tan (12/48) =14.04 degrees.
Therefore, Anthony could have walked 49.48 m towards the S 14.04 W direction.