Answer:
y = (3/4)x + 2
Step-by-step explanation:
Slope-intercept form is y=mx+b where (x, y) is a point on the linear graph, m is the slope (rise/run), and b is the y-intercept (the y-value at which the graph passes through the y-axis).
Looking at the graph, we can see that the point at which the line crosses the y-axis is (0, 2) which makes it the y-intercept. Thus, the b in the slope-intercept form is 2.
Next, we are looking for the slope of the line. To do this, we can calculate the rise/run of the line by choosing to points on it. Since we already have the point (0, 2), we just need one more.
For example, the point (-4, -1) can be used. The slope can be found by ((y-y)/(x-x)) in which the first y and x values correspond with the first point and that of the second correspond with the second set. So in this case, m = (2-(-1))/(0-(-4)) = 3/4
Plugging in the calculated m and b value in the slope intercept equation, we get y = (3/4)x + 2
It's obviously none of the above because the true area will have a square root of 3 in it because of the equilateral triangle. They want us to find the approximate area. When I was in school the difference between an approximation and the exact answer was greatly stressed but that seems to be fading of late.
That's a rectangle less an equilateral triangle. The area of an equilateral triangle is
which is easily derived but I won't bother here.

Answer: b
Answer:
D
The line shows an intercept of -3 and a slope of 5/7. Equation D displays this
Step-by-step explanation:
Answer:
y = - 111
Step-by-step explanation:
Substitute x = 5 into the quadratic for y
y = - 4(5)² - 3(5) + 4 = - 100 - 15 + 4 = - 111
Answer:
The answer is C
Step-by-step explanation: