Applicable linear expansion equation:
ΔL = αΔTL
In which
ΔL = change in length, α = Linear expansion coefficient of steel, ΔT = change in temperature, L = original length
Therefore,
ΔL = 12*10^-6*(18.5-(-3))*1410 = 0.36378 m
Answer:

Explanation:
We have an uniformly accelerated motion, with a negative acceleration. Thus, we use the kinematic equations to calculate the distance will it take to bring the car to a stop:

The acceleration can be calculated using Newton's second law:

Recall that the maximum force of friction is defined as
. So, replacing this:

Now, we calculate the distance:

The work performed on an object is the force multiplied by the distance it is moved, provided the movement is parallel to the force. Since that is the case here, we can get the work by W=Fd=1900N x 0.23m = 437J. This energy is used to split the wood.
You could say almost anything.
For example:
phones,
cars,
computers,
clocks,
hydraulics,
bicycles,
the hadron collider,
Planes,
and so on.
They go in the boxes in this order:
density
2.meter
3.matter
4.hypothesis
5.control
6.kilogram