get hold of some of her equipment, and throw it away from the craft. she should recoil to the craft ... and hope ???
Answer:
c. Momentum is the product of mass and velocity
e. Momentum is a vector quantity
g. Momentum has unit of kgm/s
Explanation:
Linear momentum P
P = m .v
m =mass
v=Velocity
If mass take in kg and velocity is in m/s then momentum p will be in kg.m/s.
1. momentum is the product of velocity and mass.
2.Momentum is a vector quantity.
3.Momentum have kg.m/s unit.
So the following option are correct.
c. Momentum is the product of mass and velocity
e. Momentum is a vector quantity
g. Momentum has unit of kgm/s.
Note-
1.Joule is the unit of energy.
2.One-half the product of mass and the square of the object's speed is known as kinetic energy.
Explanation:
The speed of the red car, relative to the blue car, is:
v = 75 m/s − 50 m/s
v = 25 m/s
Answer:
E = 0.0130 V/m.
Explanation:
The electric field is related to the potential difference as follows:

<u>Where:</u>
E: is electric field
ΔV: is the potential difference = 3.95 mV
d: is the distance of a person's chest = 0.305 m
Then, the electric field is:

Therefore, the maximum electric field created is 0.0130 V/m.
I hope it helps you!
This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF