All electromagnetic waves travel at
299,792,458 meters per second
in vacuum.
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
The characteristics of the scalar product allows to find the angle between the two vectors is:
The scalar product is the product between two vectors whose result is a scalar.
A . B = |A| |B| cos θ
Where A and B are the vectors, |A| and |B| are the modules of the vectors and θ at the angle between them.
The vector is given in Cartesian coordinates and the unit vectors in these coordinates are perpendicular.
i.i = j.j = 1
i.j = 0
A . B = (4 i - 4j). * -5 i + 7j)
A . B = - 4 5 - 4 7
A. B = -48
We look for the modulus of each vector.
|A| =
|A| =
|A| = 4 √2
|B| =
|B| = 8.60
We substitute.
-48 = 4√2 8.60 cos θ
-48 = 48.66 cos θ
θ = cos⁻¹
θ = 170º
In conclusion using the dot product we can find the angle between the two vectors is:
Learn more about the scalar product here: brainly.com/question/1550649
B.. It can easily be transformed from high voltages to low voltages.