1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
3 years ago
6

PLZZ ANSWER THE QUESTION ​

Physics
1 answer:
Allisa [31]3 years ago
4 0
The answer is negative and strong because the line is going downwards and the dots are tight
You might be interested in
Prove that the weight of an object on moon is 1/6th of that on earth​
Elena L [17]

Answer:

The mass of moon is 1/100 times and its radius 1/4 times that of earth. As a result, the gravitational attraction on the moon is about one sixth when compared to earth. Hence, the weight of an object on the moon is 1/6th its weight on the earth.

4 0
3 years ago
You are an engineer helping to design a roller coaster that carries passengers down a steep track and around a vertical loop. Th
vova2212 [387]

Answer:

h >5/2r

Explanation:

This problem involves the application of the concepts of force and the work-energy theorem.

The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.

Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)

So from newton's second law of motion,

W – N = mv²/r

N = normal force = 0

W = mg

mg = ma = mv²/r

mg = mv²/r

v²= rg

v = √(rg)

The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop

So

ΔPE = ΔKE = 1/2mv²

The height at the roller coaster starts is usually higher than the top of the loop by design. So

ΔPE =mgh - mg×2r = mg(h – 2r)

2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.

In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.

So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.

ΔPE > ΔKE

mg(h–2r) > 1/2mv²

g(h–2r) > 1/2(√(rg))²

g(h–2r) > 1/2×rg

h–2r > 1/2×r

h > 2r + 1/2r

h > 5/2r

5 0
3 years ago
Read 2 more answers
When calculating the net electrostatic force, a negative value indicates that the two charged objects involved __________.
DiKsa [7]

Answer:

B

Explanation:

The correct answer is B) have unlike charges. Since they are attracted to each other they have to be unlike

5 0
3 years ago
Which statement about dwarf planets is true?
sineoko [7]
"Pluto was the first dwarf planet to be discovered" is the one statement among the following choices given in the question that is true <span>about dwarf planets. The correct option among all the options that are given in the question is the first option or option "a". Pluto was classified as a planet at first but in the year 1930 it was classified as a dwarf planet.</span>
5 0
3 years ago
Read 2 more answers
This problem follows up on a discussion from lecture. A wind turbine with an efficiency of 45% for converting wind energy into e
Volgvan

Answer:

4.1 m

Explanation:

10 kW = 10000 W

20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s

The power yielded by the wind turbine can be calculated using the following formula

P = \frac{1}{2} \rho v^3 A C_p

where \rho = 1.2 kg/m^3 is the air density, v = 8.89 m/s is the wind speed, A is the swept area and C_p = 0.45 is the efficiency

10000 = 0.5 * 1.2 * 8.89^3 * A * 0.45

10000 = 190A

A = 10000 / 190 = 52.7 m^2

The swept area is a circle with radius r being the blade length

\pi r^2 = A = 52.7

r^2 = 52.7 / \pi = 16.79

r = \sqrt{16.79} = 4.1 m

4 0
3 years ago
Other questions:
  • A rocket lifts off the pad at cape canaveral. according to newton's law of gravitation, the force of gravity on the rocket is gi
    10·1 answer
  • Please help on this one?
    8·1 answer
  • Please help. ill make you BRAINLIEST
    9·1 answer
  • Part II # 1 A mass on a string of unknown length oscillates as a pendulum with a period of 4 sec. What is the period if: (Parts
    10·1 answer
  • The coefficent of static friction between the floor of a truck and a box resting on it is 0.28. The truck is traveling at 72.4 k
    15·1 answer
  • 9
    6·1 answer
  • What is the number at the end of an isotope’s name?
    6·1 answer
  • Which statement best explains why an object appears green in sunlight?
    15·2 answers
  • A 1.0 kg toy car is released at the top of a frictionless track on the left and rolls off of the track from its right
    6·2 answers
  • Why did astronomers suspect an eighth planet beyond uranus? how did they determine where to look for it? construct the correct e
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!