The answer is: They have no freedom to move.
However is not completely true, as even in a solid atoms still a move a bit (vibrations).
If atoms were able to slide past each other, then we would have a liquid not a solid. Liquids "flow" but never really "break apart" this is because atoms are sliding between them, think of these as a bucket of marbles rolling down a slope.
If they are free to move in all directions, then you have a gas; that's why someone uses perfume in a room, eventually everyone smells it.
Answer:
- 
- 
Explanation:
Hello,
In this case, by considering the dissolution of silver bromide:
![AgBr(s)\rightleftharpoons Ag^+(aq)+Br^-(aq) \ \ \ Ksp=[Ag^+][Br^-]=7.7x10^{-13}](https://tex.z-dn.net/?f=AgBr%28s%29%5Crightleftharpoons%20Ag%5E%2B%28aq%29%2BBr%5E-%28aq%29%20%5C%20%5C%20%5C%20Ksp%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3D7.7x10%5E%7B-13%7D)
And the formation of the complex:
![Ag^+(aq)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)\ \ \ Kf=\frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}=1.6x10^7](https://tex.z-dn.net/?f=Ag%5E%2B%28aq%29%2B2NH_3%28aq%29%5Crightleftharpoons%20Ag%28NH_3%29_2%5E%2B%28aq%29%5C%20%5C%20%5C%20Kf%3D%5Cfrac%7B%5BAg%28NH_3%29_2%5E%2B%5D%7D%7B%5BAg%5E%2B%5D%5BNH_3%5D%5E2%7D%3D1.6x10%5E7)
We obtain the balanced net ionic equation by adding the aforementioned equations:

Now, the equilibrium constant is obtained by writing the law of mass action for the non-simplified net ionic equation:
![AgBr(s)+Ag^+(aq)+2NH_3(aq)\rightleftharpoons Ag(NH_3)_2^+(aq)+Br^-+Ag^+\\\\K=[Ag^+][Br^-]*\frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}](https://tex.z-dn.net/?f=AgBr%28s%29%2BAg%5E%2B%28aq%29%2B2NH_3%28aq%29%5Crightleftharpoons%20Ag%28NH_3%29_2%5E%2B%28aq%29%2BBr%5E-%2BAg%5E%2B%5C%5C%5C%5CK%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%2A%5Cfrac%7B%5BAg%28NH_3%29_2%5E%2B%5D%7D%7B%5BAg%5E%2B%5D%5BNH_3%5D%5E2%7D)
So we notice that the equilibrium constant contains the solubility constant and formation constant for the initial reactions:

Best regards.
Answer:
7. 4H₂O
Elements: Hydrogen, Oxygen
Number of molecules: 4
Number of elements: 8 H, 4 O
Number of Atoms: 12
Explanation:
The elements are determined by the their symbol i.e. H = hydrogen.
The number of molecules is determined by the coefficient ( the number in front of everything, in this case 4).
The number of elements is determined by the coefficient and the subscripts. Multiply the coefficient by the subscript after each element. When there is no subscript, it is equal to 1. 4H₂ = 4x2 = 8; 4O = 4x1 = 4.
The number of atoms is all the individual elements added together. 8+4 = 12.
Answer:
We assume you are converting between moles CO2 and gram. You can view more details on each measurement unit: molecular weight of CO2 or grams This compound is also known as Carbon Dioxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles CO2, or 44.0095 grams.