1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
13

Muscle physiologists study the accumulation of lactic acid [ch3ch(oh)cooh] during exercise. food chemists study its occurrence i

n sour milk, beer, wine, and fruit. industrial microbiologists study its formation by various bacterial species from carbohydrates. a biochemist prepares a lactic acid-lactate buffer by mixing 225 ml of 0.85 m lactic acid (ka = 1.38 × 10−4) with 435 ml of 0.68 m sodium lactate. what is the buffer ph?
Chemistry
1 answer:
Drupady [299]3 years ago
7 0
The provided information are:
volume of 0.85 M lactic acid = 225 ml
volume of 0.68 M sodium lactate = 435 ml
Ka of the lactate buffer = 1.38 x 10⁻⁴
 The equation for dissociation of lactic acid is:
CH₃CH(OH)COOH(aq) + H₂O ⇄ CH₃CH(OH)COO⁻(aq) + H₃O⁺(aq)
The pH of buffer is calculated from Henderson-Hasselbalch equation, which is:
pH = pKa + log \frac{[conjugated base]}{[Acid]}
pKa = - log Ka = - log (1.38 x 10⁻⁴) = 3.86 
The number of moles of lactic acid and lactate are as follows:
n (Lactic acid) = 225 ml x 0.85 mmol/ml = 191.25 mmol
n (Lactate) = 435 ml x 0.68 mmol/ml = 295.8 mmol
The number of moles of lactic acid and lactate in total volume of the solution:
[CH₃CH(OH)COOH] = n (lactic acid) / 660 ml = 191.25 mmol / 660 ml = 0.29 M
[CH₃CH(OH)COO⁻] = n (lactate) / 660 ml = 0.45 M
pH = 3.86 + log \frac{0.45 M}{0.29 M} = 3.86 + 0.191 = 4.05
So the pH of given solution is 4.05
You might be interested in
5 ml of 2 normal naoh solution is to be completely neutralized by 100 ml of unknown concentration of h2so4 solution find the mas
notka56 [123]
I don’t know I’m here for the points sorry love
8 0
3 years ago
Read 2 more answers
A student placed equal volumes of honey and of water in two, identical, open dishes, and left them at room temperature for 8 hou
Ahat [919]

Answer: Honey has a much lower vapor pressure than pure water has. So, pure water evaporates at a much higher rate.

Explanation:

8 0
3 years ago
Read 2 more answers
Consider the reaction below for which K = 78.2 atm-1. A(g) + B(g) ↔ C(g) Assume that 0.386 mol C(g) is placed in the cylinder re
borishaifa [10]

Answer:

1.65 L

Explanation:

The equation for the reaction is given as:

                        A            +            B           ⇄        C

where;

numbers of moles = 0.386 mol C  (g)

Volume =  7.29 L

Molar concentration of C = \frac{0.386}{7.29}

= 0.053 M

                        A            +            B           ⇄        C

Initial               0                           0                      0.530    

Change          +x                          +x                       - x

Equilibrium      x                           x                      (0.0530 - x)

K = \frac{[C]}{[A][B]}

where

K is given as ; 78.2 atm-1.

So, we have:

78.2=\frac{[0.0530-x]}{[x][x]}

78.2= \frac{(0.0530-x)}{(x^2)}

78.2x^2= 0.0530-x

78.2x^2+x-0.0530=0  

Using quadratic formula;

\frac{-b+/-\sqrt{b^2-4ac} }{2a}

where; a = 78.2 ; b = 1 ; c= - 0.0530

= \frac{-b+\sqrt{b^2-4ac} }{2a}   or \frac{-b-\sqrt{b^2-4ac} }{2a}

= \frac{-(1)+\sqrt{(1)^2-4(78.2)(-0.0530)} }{2(78.2)}  or \frac{-(1)-\sqrt{(1)^2-4(78.2)(-0.0530)} }{2(78.2)}

= 0.0204  or -0.0332

Going by the positive value; we have:

x = 0.0204

[A] = 0.0204

[B] = 0.0204

[C] = 0.0530 - x

     = 0.0530 - 0.0204

     = 0.0326

Total number of moles at equilibrium = 0.0204 +  0.0204 + 0.0326

= 0.0734

Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT

if we make V the subject of the formula; we have:

V = \frac{nRT}{P}

where;

P (pressure) = 1 atm

n (number of moles) = 0.0734 mole

R (rate constant) = 0.0821 L-atm/mol-K

T = 273.15 K  (fixed constant temperature )

V (volume) = ???

V=\frac{(0.0734*0.0821*273.15)}{(1.00)}

V = 1.64604

V ≅ 1.65 L

3 0
3 years ago
The concentrations of the products at equilibrium are [pcl3] = 0.180 m and [cl2] = 0.250 m. what is the concentration of the rea
sineoko [7]
We have Kc = 4.2 x 10^-2 (given but missing in the question)
and When the balanced equation for this reaction is:
PCl5(g) ↔ PCl3(g) + Cl2(g)
so, according to the Kc formula:
Kc = the concentration of products / the concentration of the reactants
so, to get the concentration of the reactants in equilibrium, the concentration of the products / the concentration of the reactants should equal the Kc value which is given in the question (missing in your question).
So by substitution in Kc formula: 
Kc   = [PCl3]*[Cl2] / [PCl5]
4.2 x 10^-2 =  0.18 * 0.25 /[PCl5]
∴[PCl5] = 0.18*0.25 / 4.2x10^-2 = 1.07
So the concentration of the reactants in equilibrim = 1.07

4 0
3 years ago
The dissociation of sulfurous acid (H2SO3) in aqueous solution occurs as follows:
aksik [14]

Answer:

The [SO₃²⁻]

Explanation:

From the first dissociation of sulfurous acid we have:

                         H₂SO₃(aq) ⇄ H⁺(aq) + HSO₃⁻(aq)

At equilibrium:  0.50M - x          x            x

The equilibrium constant (Ka₁) is:

K_{a1} = \frac{[H^{+}] [HSO_{3}^{-}]}{[H_{2}SO_{3}]} = \frac{x\cdot x}{0.5 - x} = \frac {x^{2}}{0.5 -x}

With Ka₁= 1.5x10⁻² and solving the quadratic equation, we get the following HSO₃⁻ and H⁺ concentrations:

[HSO_{3}^{-}] = [H^{+}] = 7.94 \cdot 10^{-2}M

Similarly, from the second dissociation of sulfurous acid we have:

                              HSO₃⁻(aq) ⇄ H⁺(aq) + SO₃²⁻(aq)

At equilibrium:  7.94x10⁻²M - x          x            x

The equilibrium constant (Ka₂) is:  

K_{a2} = \frac{[H^{+}] [SO_{3}^{2-}]}{[HSO_{3}^{-}]} = \frac{x^{2}}{7.94 \cdot 10^{-2} - x}  

Using Ka₂= 6.3x10⁻⁸ and solving the quadratic equation, we get the following SO₃⁻ and H⁺ concentrations:

[SO_{3}^{2-}] = [H^{+}] = 7.07 \cdot 10^{-5}M

Therefore, the final concentrations are:

[H₂SO₃] = 0.5M - 7.94x10⁻²M = 0.42M

[HSO₃⁻] = 7.94x10⁻²M - 7.07x10⁻⁵M = 7.93x10⁻²M

[SO₃²⁻] = 7.07x10⁻⁵M

[H⁺] = 7.94x10⁻²M + 7.07x10⁻⁵M = 7.95x10⁻²M

So, the lowest concentration at equilibrium is [SO₃²⁻] = 7.07x10⁻⁵M.

I hope it helps you!

8 0
3 years ago
Other questions:
  • A4 kg object is being pulled to the east by a 6 N force. What is the object's<br> acceleration?
    6·1 answer
  • What is the maximum amount of Ca3(PO4)2 that can be prepared from 9.80 g of Ca(OH)2 and 9.80 g of
    14·1 answer
  • Why is it safer to live in the middle of a plate instead of near a plate boundary?
    12·1 answer
  • Sodium (Na) and iodine gas (I2) react to form sodium iodine (NaI) .
    11·2 answers
  • Compound A has the molecular formula C14H25Br and was obtained by reaction of sodium acetylide with 1,12-dibromododecane. On tre
    14·1 answer
  • 7. Elements in group one are called.​
    9·1 answer
  • consider multiplying 26.2 by 16.43. what would a mathematician say the answer is? what would a scientist say the answer is?
    14·1 answer
  • Calculate the mass percent of a solution that is prepared by adding 68.1 g of NaOH to 341 g of H20.
    7·1 answer
  • In the compound Al2O3, the ratio of aluminum to oxygen is?
    14·1 answer
  • WILL MARK BRAINLIEST<br> _________ are the outermost electrons of an atom
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!