When both particles, the electron and the proton move at the same speed, they may have differences with their de Broglie wavelength, the particle that would have a longer wavelength would be the proton since the wavelength is in direct proportionality with the mass of the particle.
Answer:
a) C = 4,012 10⁻¹⁴ F, b) Q = 1.6 10⁻¹¹ C
, c) U = 3.21 10⁻¹¹ J
Explanation:
a) The capacitance of a capacitor is
C = k e₀ A / d
Let's calculate
C = 4 8.85 10⁻¹² 17 10⁻⁴ / 0.150 10⁻²
C = 4,012 10⁻¹⁴ F
b) let's look the charge
C = Q / ΔV
Q = C ΔV
Q = 4,012 10⁻¹⁴ 400
Q = 1.6 10⁻¹¹ C
c) The stored energy
U = ½ C ΔV²
U = ½ 4,012 10⁻¹⁴ 400²
U = 3.21 10⁻¹¹ J
You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
Answer:
D. only briefly while being connected or disconnected.
Explanation:
As we know that transformer works on the principle of mutual inductance
here we know that as per the principle of mutual inductance when flux linked with the primary coil charges then it will induce EMF in secondary coil
So here when AC source is connected with primary coil then it will give output across secondary coil because AC source will have change in flux with time.
Now when we connect DC source across primary coil then it will not induce any EMF across secondary coil because DC source is a constant voltage source in which flux will remain constant always
So here in DC source the EMF will only induce at the time of connection or disconnection when flux will change in it while rest of the time it will give ZERO output
so correct answer will be
D. only briefly while being connected or disconnected.
Answer:
Explanation:
A proton of charge
q=+1.609×10^-19C
Orbit a radius of 12cm
r=0.12m
Magnetic Field of 0.31T
Angle between velocity and field is 90°
a. Because the magnetic force F supplies the centripetal force Fc.
The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength B is given by
F = qvB sin θ
And the centripetal force is given as
Fc=mv²/r
Where m is mass of proton
m=1.673×10^-27kg
Then, F=Fc
qvB sin θ=mv²/r
qBSin90=mv/r
rqB=mv
Then, v=rqB/m
v=0.12×1.609×10^-19×0.31/1.673×10^-23
v=3577692.78m/s
v=3.58×10^6m/s
b. Since,
F=qVBSin90
F=1.609×10^-19×3.58×10^6×0.31
F=1.785×10^-13 N.