By definition, the momentum is given by:
p = m * v
Where,
m = mass
v = speed.
On the other hand,
F = m * a
Where,
m = mass
a = acceleration:
For the boy we have:
p1 = m * v
p1 = (F / a) * v
p1 = ((710) / (9.81)) * (0.50)
p1 = 36.19 Kg * (m / s)
For the girl we have:
p2 = m * v
p2 = (F / a) * v
p2 = ((480) / (9.81)) * (v)
p2 = 48.93 * v Kg * (m / s)
Then, we have:
p1 + p2 = 0
36.19 + 48.93 * v = 0
Clearing v:
v = - (36.19) / (48.93)
v = -0.74 m / s (negative because the velocity is in the opposite direction of the boy's)
Answer:
the girl's velocity in m / s after they push off is -0.74 m / s
Answer:
the speed of the block when it reaches point B is 14 m/s
Explanation:
Given that:
mass of the block slides = 1.5 - kg
height = 10 m
Force constant = 200 N/m
distance of rough surface patch = 20 m
coefficient of kinetic friction = 0.15
In order to determine the speed of the block when it reaches point B.
We consider the equation for the energy conservation in the system which can be represented by:






v = 14 m/s
Thus; the speed of the block when it reaches point B is 14 m/s
Answer:
t = 2.13 s
Explanation:
given,
height of the building = 22.3 m
horizontal distance = 127 m
acceleration due to gravity = 9.8 m/s²
time for which ball is in motion = ?
using equation of motion

initial velocity is zero



t = √4.551
t = 2.13 s
If the refractive index of some substance is 1.33, then
the speed of light in that substance is
(speed of light in vacuum) / (1.33) =
(299,792,458 m/s) / (1.33) = <em>225,407,863 m/s</em>
Answer:
<u><em>The plank moves 0.2m from it's original position</em></u>
Explanation:
we can do this question from the constraints that ,
- the wheel and the axle have the same angular speed or velocity
- the speed of the plank is equal to the speed of the axle at the topmost point .
thus ,
<em>since the wheel is pure rolling or not slipping,</em>
<em>⇒
</em>
where
<em>
- speed of the wheel</em>
<em>
- angular speed of the wheel</em>
<em>
- radius of the wheel</em>
<em>since the wheel traverses 1 m let's say in time '
' ,</em>
<em>
</em>
∴
⇒
the speed at the topmost point of the axle is :
⇒
this is the speed of the plank too.
thus the distance covered by plank in time '
' is ,
⇒