Carbon atomic number ⇒ 6
Carbon mass number ⇒ 12.
Carbon atomic number - Carbon mass number = number of neutrons.
12 - 6 = 6 neutrons.
Proton charge ⇒ +1
The total charge of the nucleus of a carbon atom ⇒⇒⇒ +6.
So the naswer is (3) +6
do you mean polymers or organic compounds?
Answer:
The ΔH is 5.5 kJ/mol and the reaction is endothermic.
Explanation:
To calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction, you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient ( number of molecules of each compound participating in the reaction) and finally subtract them:
Combustion enthalpy = ΔH = ∑H products - ∑Hreactants
In this case:
ΔH = 15.7 kJ/mol - 10.2 kJ/mol= 5.5 kJ/mol
An endothermic reaction is one whose enthalpy value is positive, that is, the system absorbs heat from the environment (ΔH> 0).
<u><em>The ΔH is 5.5 kJ/mol and the reaction is endothermic.</em></u>
Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Answer:
<u>5 moles S x (36.02 g S/mole S) = 180.1 grams of S</u>
Explanation:
The periodic table has mass units for every element that can be correlated with the number of atoms of that element. The relationship is known as Avogadro's Number. This number, 6.02x
, is nicknamed the mole, which scientists found to be a lot more catchy, and easier to write than 6.02x
. <u>The mole is correlated to the atomic mass of that element.</u> The atomic mass of sulfur, S, is 36.02 AMU, atomic mass units. <u>But it can also be read as 36.02 grams/mole.</u>
<u></u>
<u>This means that 36.02 grams of S contains 1 mole (6.02x</u>
<u>) of S atoms</u>.
<u></u>
This relationship holds for all the elements. Zinc, Zn, has an atomic mass of 65.38 AMU, so it has a "molar mass" of 65.38 grams/mole. ^5.38 grams of Zn contains 1 mole of Zn atoms.
And so on.
5.0 moles of Sulfur would therefore contain:
(5.0 moles S)*(36.02 grams/mole S) = <u>180.1 grams of S</u>
Note how the units cancel to leaves just grams. The units are extremely helpful in mole calculations to insure the correct mathematical operation is done. To find the number of moles in 70 g of S, for example, we would write:
(70g S)/(36.02 grams S/mole S) = 1.94 moles of S. [<u>Note how the units cancel to leave just moles</u>]