Methyle orange is the indicator that is used in sulfuric acid.
A molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
The bonding orbital, which would be more stable and encourages the bonding of the two H atoms into
, is the orbital that is located in a less energetic state than just the electron shells of the separate atoms. The antibonding orbital, which has higher energy but is less stable, resists bonding when it is occupied.
An asterisk (sigma*) is placed next to the corresponding kind of molecular orbital to indicate an antibonding orbital. The antibonding orbital known as * would be connected to sigma orbitals, as well as antibonding pi orbitals are known as
* orbitals.
Therefore, molecular orbital that decreases the electron density between two nuclei is said to be <u>antibonding.</u>
<u></u>
Hence, the correct answer will be option (b)
<u />
To know more about molecular orbital
brainly.com/question/13265432
#SPJ4
<u />
<u />
Answer:
We need 226 grams of FeS
Explanation:
Step 1: Data given
Mass of FeCl2 = 326 grams
Molar mass FeCl2 = 126.75 g/mol
Step 2: The balanced equation
FeS + 2 HCl → H2S + FeCl2
Step 3: Calculate moles FeCl2
Moles FeCl2 = 326 grams / 126.75 grams
Moles FeCl2 = 2.57 moles
Step 4: Calculate moles FeS needed
For 1 mol H2S and 1 mol FeCl2 produced, we need 1 mol FeS and 2 moles HCl
For 2.57 moles FeCl2 we need 2.57 moles FeS
Step 5: Calculate mass FeS
Mass FeS = 2.57 moles * 87.92 g/mol
Mass FeS = 226 grams FeS
We need 226 grams of FeS
Mechanism for oxidation of alkene by KMnO₄ is provided in the attached image:
The answer is D: Products combine to produce new reactants... Hope this helps! :)