Answer:
The answer to the question: "Will Hank have the pool drained in time?" is:
- <u>Yes, Hank will have the pool drained in time</u>.
Step-by-step explanation:
To identify the time Hank needs to drain the pool, we can begin with the time Hank has from 8:00 AM to 2:00 PM in minutes:
- Available time = 6 hours * 60 minutes / 1 hour (we cancel the unit "hour")
- Available time = 360 minutes
Now we know Hank has 360 minutes to drain the pool, we're gonna calculate the volume of the pool with the given measurements and the next equation:
- Volume of the pool = Deep * Long * Wide
- Volume of the pool = 2 m * 10 m * 8 m
- Volume of the pool = 160 m^3
Since the drain rate is in gallons, we must convert the obtained volume to gallons too, we must know that:
Now, we use a rule of three:
If:
- 1 m^3 ⇒ 264.172 gal
- 160 m^3 ⇒ x
And we calculate:
(We cancel the unit "m^3)- x = 42267.52 gal
At last, we must identify how much time take to drain the pool with a volume of 42267.52 gallons if the drain rate is 130 gal/min:
- Time to drain the pool =
(We cancel the unit "gallon") - Time to drain the pool = 325.1347692 minutes
- <u>Time to drain the pool ≅ 326 minutes</u> (I approximate to the next number because I want to assure the pool is drained in that time)
As we know, <u><em>Hank has 360 minutes to drain the pool and how it would be drained in 326 minutes approximately, we know Hank will have the pool drained in time and will have and additional 34 minutes</em></u>.
Answer:
yea
Step-by-step explanation:
Answer: H
Step-by-step explanation:
Supplementary angles just mean they add up to 180 degrees. 180 degrees means that when the two angles are put together one of each of their sides will form a straight line.
Answer:
The answer is "No, There are more than two possible outcomes on each trial of the experiment
".
Step-by-step explanation:
When various ice cream products are known. This might surpass 2 brands or more. Thus the number of different results varies considerably.
BINOMIAL DISTRIBUTION:
An investigation with a set set of individual tests, each only with two possible results.
Four conditions are met by the binomial experiment
- The set of indicators is fixed.
- Each attempt is autonomous.
- 2 potential results exist only.
- In each and every test, the probability of each outcome remains unchanged.
Is there a picture that goes with this problem?