Intercourse between two beings, usually male and female to procreate.
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
Using electronegativity difference is a good guide to the ionic/ covalent nature. Large differences indicate greater ionic character, small differences more covalent character. The larger the difference in electronegativity the more ionic properties a bond is said to have. The smaller the difference in electronegativity the more covalent properties a bond is said to have.
Ionic bonding is formed through electrostatic attraction between a cation and anion. Foe example, Sodium fluoride has ionic bonding because it is composed by sodium and Fluorine (a non metal). On the other hand, covalent bonding is characterized by atoms sharing pairs of electrons. For example; methane has covalent bonding; carbon has 4 valence electrons and hydrogen has 1; when they bond they have a total of 8 electrons and satisfies the octet rule.
<span>1.Remove the ending of the second element, and add "ide" just like in ionic compounds
2.When naming molecular compounds prefixes are used to dictate the number of a given element present in the compound
3.If there is only one of the first element, you can drop the prefix
<span>4.If there are two vowels in a row that sound the same once the prefix is added (they "conflict"), the extra vowel on the end of the prefix is removed</span></span>
Answer:
0.156mol
Explanation:
Number of moles of a substance can be calculated from its mass by dividing its mass by molar mass i.e.
Number of moles (n) = mass/molar mass
Molar mass of PbCl4 is as follows, where Pb = 207.2g/mol, Cl = 35.5g/lol
PbCl4 = 207.2 + 35.5(4)
= 207.2 + 142
= 349.2g/mol
Using: mole = mass/molar mass
mole = 54.32 grams ÷ 349.2g/mol
mole = 0.1555
mole = 0.156mol