<span>A chemical reactions :
Involves small amounts of energy.
</span><span> Only electrons are involved.
</span><span>The mass remains the same.</span>
Answer:
20.4 grams Zn
Explanation:
To find the mass, you first need to find the moles. This can be found using the Ideal Gas Law equation:
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
Before you can plug the values into the equation, you need to convert Celsius to Kelvin.
P = 0.980 atm R = 0.08206 atm*L/mol*K
V = 7.80 L T = 25.0 °C + 273.15 = 298.15 K
n = ? moles
PV = nRT
(0.980 atm)(7.80 L) = n(0.08206 atm*L/mol*K)(298.15 K)
7.644 = n(24.466)
0.312 moles = n
Now that you have the number of moles, you can convert it to grams using the atomic mass of zinc. The final answer should have 3 sig figs to match the sig figs in the given values.
Atomic Mass (Zn): 65.380 g/mol
0.312 moles Zn 65.380 grams
------------------------- x ------------------------- = 20.4 grams Zn
1 mole
Answer:
The volume of NaOH required is - 0.01 L
Explanation:
At equivalence point
,
Moles of
= Moles of NaOH
Considering
:-
Given that:
So,
<u>The volume of NaOH required is - 0.01 L</u>
(P1)(V1)=(P2)(V2)
(1.50)(5.00)=(1240/760)(V2)
(7.5)/(1240/760)=V2
V2=4.596774194 L
The concentration of the HCl solution is 0.047 M.
Explanation:
Data given about acid and base:
volume of acid Vacid = 46.9 ml
molarity of acid =?
volume of the base (NaOH) = 16.4 ml
molarity of the base = 0.135 M
To know the concentration of the acid in this reaction, the formula used in titration is used. It is
Macid X Vacid = Mbase X Vbase
the formula is rewritten as:
Macid = 
putting the values in the equation:
Macid = 
= 0.047 M
the concentration of the acid i.e HCl in the solution is of 0.047 M.