Water has a molar mass of 18.015 g/mol . This means that one mole of water molecules has a mass of 18.015 g . So, to sum this up, 6.022⋅1023 molecules<span> of water will amount to 1 mole of water, which in turn will have a mass of 18.015 g . 2.7144moles H2O ⋅</span>6.022<span>⋅1023molec.1mole H2O =1.635⋅1024molec.</span>
Answer:
V₂ = 45.53 L
Explanation:
Given data:
Initial temperature = 850 K
Initial volume = 65 L
Initial pressure = 450 KPa
Final temperature = 430 K
Final pressure = 325 KPa
Final volume = ?
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 450 KPa× 65 L × 430 K / 850 K × 325KPa
V₂ = 12577500 KPa .L. K / 276250 K. KPa
V₂ = 45.53 L
Answer:
<h2>0.94 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.94 g/mL</h3>
Hope this helps you
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.