Empirical formula is the simplest ratio of components making up a compound.
The percentage composition of each element has been given
therefore the mass present of each element in 100 g of compound is
B N H
mass 40.28 g 52.20 g 7.53 g
number of moles
40.28 g / 11 g/mol 52.20 g / 14 g/mol 7.53 g / 1 g/mol
= 3.662 mol = 3.729 mol = 7.53 mol
divide the number of moles by the least number of moles, that is 3.662
3.662 / 3.662 3.729 / 3.662 7.53 / 3.662
= 1.000 = 1.018 = 2.056
the ratio of the elements after rounding off to the nearest whole number is
B : N : H = 1 : 1 : 2
therefore empirical formula for the compound is B₁N₁H₂
that can be written as BNH₂
Answer:
Whats that supposed to mean?
whats the question
Explanation:
Answer: 13.9 g of
will be produced from the given mass of oxygen
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
7 moles of
produce = 6 moles of 
Thus 0.900 moles of
will produce =
of 
Mass of 
Thus 13.9 g of
will be produced from the given mass of oxygen
There will be 7.5 g of Be-11 remaining after 28 s.
If 14 s = 1 half-life, 28 s = 2 half-lives.
After the first half-life, ½ of the Be-11 (15 g) will disappear, and 15 g will remain.
After the second half-life, ½ of the 15 g (7.5 g) will disappear, and 7.5 g will remain.
In symbols,
<em>N</em> = <em>N</em>₀(½)^<em>n</em>
where
<em>n</em> = the number of half-lives
<em>N</em>₀ = the original amount
<em>N</em> = the amount remaining after <em>n</em> half-lives
A qualitative test for sulfate in alum crystals using ionic reactions of barium chloride (BaCl2) is given Ba²⁺(aq) + SO₄²⁻ (aq) → BaSO₄(s).
<h3>What is qualitative test?</h3>
Qualitative test measures changes in color, melting point, odor, reactivity, radioactivity, boiling point, bubble production, and precipitation of the sample.
<h3>Qualitative test for sulfate in alum crystals </h3>
When an aqueous solution of a barium salt (BaCl₂) is mixed with an aqueous solution containing sulfate, a white precipitate of insoluble BaSO₄ forms according to the net ionic equation given below;
Ba²⁺(aq) + SO₄²⁻ (aq) → BaSO₄(s)
Thus, a qualitative test for sulfate in alum crystals using ionic reactions of barium chloride (BaCl2) is given Ba²⁺(aq) + SO₄²⁻ (aq) → BaSO₄(s).
Learn more about qualitative test here: brainly.com/question/2109763
#SPJ1