Answer: The force was 13.92 Newtons.
Explanation:
First, let's recall the second Newton's law:
The net force is equal to the mass times the acceleration, or:
F = m*a
where:
F = force
m = mass
a = acceleration.
When the player hits the ball with the bat, he applies a force that accelerates the ball for a small period of time, that increases greatly the speed of the ball.
In this case, we know that:
the mass of the ball is 0.145 kg
The acceleration of the ball is 96m/s^2
Then we can input those values in the above equation to find the force.
F = 0.145kg*96m/s^2 = 13.92 N
The force was 13.92 Newtons.
Answer:
a.Attractive

Explanation:
When it comes to charges, the charges which are alike repel each other and the charges which are different will attract each other.
Here, there is a proton and electron which are different particles hence, they will attract each other.
= Charge of electron and proton = 
r = Distance between them = 997 nm
k = Coulomb constant = 
Force is given by

The force of attraction between the particles will be 
Answer:
possibly because the car is running out of gas
Explanation: