1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lorasvet [3.4K]
3 years ago
12

A wave has a wavelength of 9 meters and a period of 0.006 what's the velocity of the wave

Physics
1 answer:
Alenkinab [10]3 years ago
5 0
Given:\\\lambda = 9m\\T=0.006s\\\\Find:\\v=?\\\\Solution:\\\\v= \frac{\lambda}{T} \\\\v= \frac{9m}{0.006s} =1500 \frac{m}{s}
You might be interested in
Find the fundamental frequency and the next three frequencies that could cause standing-wave patterns on a string that is 30.0 m
maksim [4K]

Answer:

0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz

Explanation:

The fundamental frequency of a standing wave on a string is given by

f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}

where

L is the length of the string

T is the tension in the string

\mu is the mass per unit length

For the string in the problem,

L = 30.0 m

\mu=9.00\cdot 10^{-3} kg/m

T = 20.0 N

Substituting into the equation, we find the fundamental frequency:

f=\frac{1}{2(30.0)}\sqrt{\frac{20.0}{(9.00\cdot 10^{-3}}}=0.786 Hz

The next frequencies (harmonics) are given by

f_n = nf

with n being an integer number and f being the fundamental frequency.

So we get:

f_2 = 2 (0.786 Hz)=1.572 Hz

f_3 = 3 (0.786 Hz)=2.358 Hz

f_4 = 4 (0.786 Hz)=3.144 Hz

6 0
3 years ago
How much electrical energy is used by a 400 W toaster that is operating for 5
andrew11 [14]

Answer:

The answer is C. 120,000 J.

Explanation:

8 0
2 years ago
What is the kinetic energy of a 1,350kg car traveling at a speed of 12m/s?
Ainat [17]
Kinetic energy= 1/2 m v^2

so... 1/2(1350)(12^2)

kinetic energy = 97200Joules
7 0
3 years ago
LVULAN
3241004551 [841]

For this case we have that by definition, the kinetic energy is given by the following formula:

k= \frac {1} {2} * m * v ^ 2

Where:

m: It is the mass

v: It is the velocity

According to the data we have to:

m = 100 \ kg\\v = 9 \frac {m} {s}

Substituting the values we have:

k = \frac {1} {2} * (100) * (9) ^ 2\\k = \frac {1} {2} * (100) * 81\\k = 50 * 81\\k = 4050

finally, the kinetic energy is 4050 \ J

Answer:

Option A

7 0
3 years ago
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at
Vesna [10]

Answer:

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

Explanation:

Given that m= 1 slug and given that spring stretches by 2 feet so we can find the spring constant K

mg=k x

1 x 32= k x 2

K=16

And also give that damping force is 8 times the velocity so damping constant C=8.

We know that equation for spring mass system

my''+Cy'+Ky=F

Now by putting the values

1 y"+8 y'+ 16y=6 cos 4 t ----(1)

The general solution of equation Y=CF+IP

Lets assume that at steady state the equation of y will be

y(IP)=A cos 4t+ B sin 4t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -4A sin 4t+4B cos 4t

y"=-16A cos 4t-16B sin 4t

Now put the values of y" , y' and y in equation 1

1 (-16A cos 4t-16B sin 4t)+8( -4A sin 4t+4B cos 4t)+16(A cos 4t+ B sin 4t)=6sin4 t

So by comparing the coefficient both sides

-16A+32B+16A=0  So B=0

-16 B-32 A+16B=6  So A=-3/16

y=-3/16 cos 4t

Now to find the CF  of differential equation 1

y"+8 y'+ 16y=6 cos 4 t

Homogeneous version of above equation

m^2+8m+16=0

So CF =(C_1+tC_2)e^{-2t}

So the general equation

Y=(C_1+tC_2)e^{-2t}-3/16 cos 4t

Given that t=0 Y=0 So

C_1=\dfrac{3}{16}

t=0 Y'=0 So

C_2 =\dfrac{3}{8}

Y=(\dfrac{3}{16}+t \dfrac{3}{8})e^{-2t}-\dfrac{3}{16}cos 4t

The above equation is the general equation for motion.

3 0
3 years ago
Other questions:
  • Predict what the MASS would be of something exerting a force of 45N on a spring scale. EXPLAIN how you got
    15·1 answer
  • You are designing a ski jump ramp for the next Winter Olympics. Youneed to calculate the vertical height^ h from the starting ga
    10·1 answer
  • What causes an electric current in a wire?
    5·2 answers
  • A car weighing 12,000 N is parked on a 36° slope. The car starts to roll down the hill. What is the acceleration of the car?​
    8·1 answer
  • A subway car moves at a constant speed of 10 m/s over a period of 10 s. What is the instantaneous speed halfway through this mot
    6·1 answer
  • A(n) 636 kg elevator starts from rest. It moves upward for 4.5 s with a constant acceleration until it reaches its cruising spee
    9·1 answer
  • 8. If Bulb 8 burns out, how will the remaining bulbs be affected?
    15·1 answer
  • Why is it that when riding in a car, you don't feel like you're moving?
    9·1 answer
  • Use the following formula to answer the following statement. Round to the nearest tenth.
    15·1 answer
  • A gyroscope flywheel of radius 1.96 cm is accelerated from rest at 13.0 rad/s2 until its angular speed is 2270 rev/min. (a) What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!