The common neutralization reaction that involve NaOH reacting with HNO3 produces
NaNO3 and H2O
The equation for reaction is as folows
NaOH + HNO3 = NaNO3 + H2O
that is 1 mole of NaOH reacted with 1 mole of HNO3 to form 1 mole of NaNO3 and 1 mole of H2O
Answer:
7.00
Explanation:
When the solutions are mixed, the HCl dissociates to form the ions H+ and Cl-. The ion H+ will react with the NH3 to form NH4+. The stoichiometry for this is 1 mol of HCl to 1 mol of H+ to 1 mol of Cl-, and 1 mol of H+ to 1 mol of NH3 to 1 mol of NH4+.
First, let's find the number of moles of each one of them, multiplying the concentration by the volume:
nH+ = 0.15 M * 25 mL = 3.75 mmol
nNH3 = 0.52 M * 25 mL = 13 mmol
So, all the H+ is consumed, and the neutralization is completed, thus pH will be the pH of the solvent (water), pH = 7.00.
Answer:- 448 mL of hydrogen gas are formed.
Solution:- It asks to calculate the volume of hydrogen gas formed in milliliters at STP when 0.020 moles of magnesium reacts with excess HCl acid. The balanced equation is:

There is 1:1 mol ratio between Mg and hydrogen gas. So, the moles of hydrogen gas is also equals to the moles of Mg reacted.
moles of Hydrogen gas formed = 0.020 mol
At STP, volume of 1 mol of the gas is 22.4 L. We need to calculate the volume of 0.02 moles of hydrogen gas.

= 0.448 L
They want answer in mL. So, let's convert L to mL using the conversion formula, 1L = 1000mL

= 448 mL
So, 0.020 moles of magnesium would produce 448 mL of hydrogen gas at STP on reacting with excess of HCl acid.
Answer: Intrusive rock also called plutonic rock. They are formed from magma forced into older rocks at depths within the earths crust.
Explanation: