1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
2 years ago
8

Evaporation is a process that requires energy to occur

Physics
1 answer:
Anarel [89]2 years ago
8 0
Evaporation is a process that requires energy to occur endothermic reaction.
You might be interested in
In a popular classroom demonstration, a cotton ball is placed in the bottom of a strong test tube. A plunger fits inside the tub
mario62 [17]

Answer:

An increase in air temperature because of its compression.

Explanation:

The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.  

P = kT  

<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>

Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.      

I hope it helps you!

3 0
3 years ago
Why would you have trouble breathing at high altitudes?
monitta

Answer:

A. It is colder at the top of a mountain

Explanation:

4 0
2 years ago
The process of bringing a complaint and filing an answer is known as the _____. a. Trials b. Coercions c. Pleadings d. Countercl
LekaFEV [45]

Answer:

pleading

Explanation:

the first step in a lawsuit where parties pass their claims and their defenses. the plaintiff or the one complaining states the issue while the defendant states his answer on the complain and his defense

7 0
3 years ago
Read 2 more answers
True or False: The energy increase of an object acted on only by a gravitational force is equal to the product of the object's w
tamaranim1 [39]

Answer:

False.

Explanation:

The statement shown in the question above is false and this can be confirmed by Newton's law on universal gravitation. According to Newton, the gravitational force exerted on any body is proportional to its weight, but the distance that the object travels when falling is disproportionate. In addition, if the force resulting from the weight of the object and its displacement has an angle of 0º, the weight force of that object will provide an increase in kinetic energy.

4 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • In general it is expected that ________. A) osmotic pressure will remain relatively consistent throughout the capillary bed B) o
    7·1 answer
  • A typical 12-V car battery can deliver about 750,000 C of charge before dying. This is not a lot of charge. As a comparison, cal
    6·1 answer
  • When a pair of identical resistors are con- nected in series, the
    12·1 answer
  • Yodelin has fifty quarters and dimes. Their total value is $9.80. Which of these systems of equations can be used to find the nu
    7·1 answer
  • Carbon dioxide being released from a fire extinguisher a good example of how volume __________.
    15·1 answer
  • Which of the following factors can affect the rate of soil formation?
    10·1 answer
  • A dolphin can swim at a constant speed of 12.5 m/s. How
    14·2 answers
  • In a photoelectric effect experiment, it is observed that violet light does not eject electrons from a particular metal. Next, r
    15·1 answer
  • Astrology is a sub-discipline of astronomy.<br> ОА. A<br> True<br> ОВ.<br> False
    7·1 answer
  • A force of 20 N is exerted by an electric field on a test charge of 8.0 x 10² C at a point, P. What is the electric field streng
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!