Answer:
left side top to bottom:
- saccule
- utricle
- ampullae
- semicircular duct: anterior
- semicircular duct: lateral
- semicircular duct: posterior
right side top to bottom:
- cochlear duct
- spiral ganglion of cochlea
- cochlear nerve
- vestibular nerve
We need first to use the formula F=m(a+g), m iis the total mass, a is the acceleration, g is gravity pulling the blocks. So the procedure will be
<span>m=2kg(both blocks)+500g(both ropes) → m=2.5kg </span>
<span>a=3.00m/s^2 </span>
<span>g=9.8m/s^2 </span>
<span>F=m(a+g) → F=2.5kg (3.00m/s^2 + 9.8m/s^2) → F=2.5kg (12.8m/s^2) → F=32 N
To calculate the tension at the top of rope 1 you need to use the formula </span>T=m(a+g) so it will be <span>T=m(a+g) → T=1.5kg(12.8m/s^2) → T=19.2N
</span>We can now calculate the tension at the bottom of rope 1 using the formula: <span>T=m(a+g) → T=1.25kg(12.8m/s^2) → T=16N
</span>Now to find the tension at the top of rope 2 we do it like this:
<span>T=m(a+g) → T=.25kg(12.8m/s^2) → T=3.2</span>
The person is at rest with respect to the car. So the best answer is:
c. the front seat of the car.