Answer:
Emechanical=mgh+
mν²
Explanation:
The equation for the total mechanical energy is:
Emechanical=Epotential+Ekinetic
In which,
Epotential=mgh; m: mass of the body, g: gravity; h: height
Ekinetic=
mν²; m: mass of the body, ν: velocity of the body
So,
Emechanical=mgh+
mν²
Hi!
The energy of the block is 4 m/s
To calculate this, you need to use the equation for
kinetic energy. The block is sliding (i.e. it's moving). If the object is sliding across a level surface, the only energy it has is kinetic energy, because
there is no change in potential energy (which changes with height). So, the mechanical energy will be pure kinetic energy. The equation is the following, derived from the expression for kinetic energy:

Have a nice day!
Average acceleration = (change in speed) / (time for the change) .
Average acceleration = (13.2 - 6) / (6.32) = 7.2 / 6.32 = about <em>1.139... m/s²</em> .
Answer:
(a) 45 micro coulomb
(b) 6 micro Coulomb
Explanation:
C = 3 micro Farad = 3 x 10^-6 Farad
V = 15 V
(a) q = C x V
where, q be the charge.
q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb
(b)
V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad
q = C x V
where, q be the charge.
q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb