The reason an astronaut in an earth satellite feels weightless is that the astronaut is falling.
Option a
<u>Explanation: </u>
The other options except Option is not applicable since the gravitational force is a long range force, in which the satellite revolves very close to the surface of the Earth where the gravity is felt.The zero weight experienced by the astronaut in a satellite is due to the earth pulling along with satellite. Due to gravitational force of the Earth,the astronaut falls freely .
But why not the satellite comes down due to gravity when its launched in space. The fact is that the satellite is launched with velocity of tangent direction and it is very high. The centripetal force balances the gravity.
Would would have moved a total distance of 2k, because walking is a slower speed does not change distance
Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know from the Coulomb's Law that, Coulomb's force is directly proportional to the product of two charges q1 and q2 and inversely proportional to the square of the radius between them.
So,
F = 
Now, we are asked to get the greatest force. So, in order to do that, product of the charges must be greatest because the force and product of charges are directly proportional.
Let's suppose, q1 = q
So,
if q1 = q
then
q2 = Q-q
Product of Charges = q1 x q2
Now, it is:
Product of Charges = q x (Q-q)
So,
Product of Charges = qQ - 
And the expression qQ -
is clearly a quadratic expression. And clearly its roots are 0 and Q.
So, the highest value of the quadratic equation will be surely at mid-point between the two roots 0 and Q.
So, the midpoint is:
q =
q = Q/2 and it is the highest value of each charge in order to get the greatest force.
<span>You have just demonstrated an insight learning. Internal insight occurs if one learned a new way without the help of environmental factors. In here, what the person initially learned that if one saw a broken light bulb from a lamp, he can be cut through the jagged glass if one does not wear a pair of gloves. And maybe because at the moment, the person could not find one, he felt using a cut potato to pick up the pieces of the broken lamp. This is a demonstration of insight learning. The person found a way to pick up the pieces of the broken lamp by using his instinct at the moment. The person is not influenced by an outside source to tell him to use a potato. </span>
Answer:
23376 days
Explanation:
The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

where k is a constant.
From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

Let the orbital period of the earth be
and its mean distance of from the sun be
.
Also let the orbital period of the planet be
and its mean distance from the sun be
.
Equation (2) therefore implies the following;

We make the period of the planet
the subject of formula as follows;

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

Substituting equation (5) into (4), we obtain the following;

cancels out and we are left with the following;

Recall that the orbital period of the earth is about 365.25 days, hence;
