Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:3,45 x 10^9 N
Explanation: We have considered the total charge for each coin , this is the total atoms x 29 electrons for cooper and multiplier by electron charge, the total charge for each coin is 0,464 C
Finally we use the Coulomb law,
F=k Q/ (r)^2
a) 2.75 s
The vertical position of the ball at time t is given by the equation

where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:

This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:

where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:

And the negative sign means the direction is downward.
Answer:
Explanation:
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. The exact conservation laws include conservation of energy, and conservation of linear momentum, and also conservation of angular momentum, aswell as the conservation of electric charge
It seems that you have missed the given options for the given statement above whether it is true or false. But anyway, the correct answer would be TRUE. It is true that one <span>of the most effective ways to evaluate data is to try to replicate it. Hope that this answer will help you. </span>