1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
7

A −4.00 μC charge sits in static equilibrium in the center of a conducting spherical shell that has an inner radius 3.13 cm and

an outer radius 4.13 cm. The shell has a net charge of −6.43 μC. Determine the charge on each surface of the shell and the electric field just outside the shell.
charge on inner surface of shell μC
charge on outer surface of shell μC
magnitude of electric field just outside the shell N/C
Physics
1 answer:
Mariulka [41]3 years ago
5 0

Answer:

(a). The charge on the outer surface is −2.43 μC.

(b). The charge on the inner surface is 4.00 μC.

(c). The electric field outside the shell is 3.39\times10^{7}\ N/C

Explanation:

Given that,

Charge q₁ = -4.00 μC

Inner radius = 3.13 m

Outer radius = 4.13 cm

Net charge q₂ = -6.43 μC

We need to calculate the charge on the outer surface

Using formula of charge

q_{out}=q_{2}-q_{1}

q_{out}=-6.43-(-4.00)

q_{out}=-2.43\ \mu C

The charge on the inner surface is q.

q+(-2.43)=-6.43

q=-6.43+2.43= 4.00\ \mu C

We need to calculate the electric field outside the shell

Using formula of electric field

E=\dfrac{kq}{r^2}

Put the value into the formula

E=\dfrac{9\times10^{9}\times6.43\times10^{-6}}{(4.13\times10^{-2})^2}

E=33927618.73\ N/C

E=3.39\times10^{7}\ N/C

Hence, (a). The charge on the outer surface is −2.43 μC.

(b). The charge on the inner surface is 4.00 μC.

(c). The electric field outside the shell is 3.39\times10^{7}\ N/C

You might be interested in
A stone that is dropped freely from rest traveled half the total height in the last second. with what velocity will it strike th
alexira [117]

Answer:

hellooooo :) ur ans is 33.5 m/s

At time t, the displacement is h/2:

Δy = v₀ t + ½ at²

h/2 = 0 + ½ gt²

h = gt²

At time t+1, the displacement is h.

Δy = v₀ t + ½ at²

h = 0 + ½ g (t + 1)²

h = ½ g (t + 1)²

Set equal and solve for t:

gt² = ½ g (t + 1)²

2t² = (t + 1)²

2t² = t² + 2t + 1

t² − 2t = 1

t² − 2t + 1 = 2

(t − 1)² = 2

t − 1 = ±√2

t = 1 ± √2

Since t > 0, t = 1 + √2.  So t+1 = 2 + √2.

At that time, the speed is:

v = at + v₀

v = g (2 + √2) + 0

v = g (2 + √2)

If g = 9.8 m/s², v = 33.5 m/s.

4 0
3 years ago
How can you change the phases of matter using thermal energy
Leokris [45]

Answer:

These energy exchanges are not changes in kinetic energy. They are changes in bonding energy between the molecules. If heat is coming into a substance during a phase change, then this energy is used to break the bonds between the molecules of the substance.

8 0
3 years ago
Does anyone taste the difference between left and right twix?
4vir4ik [10]

I personally don't (I can't speak for others tho) but I say right twix is better for the memes

3 0
3 years ago
In an experiment in space, one proton is held fixed and another proton is released from rest a distance of 1.00 mm away. part a
mihalych1998 [28]
<span>We can use Coulomb's law to find the force F acting on the proton that is released. F = k x Q1 x Q2 / r^2 k = 9 x 10^9 Q1 is the charge on one proton which is 1.6 x 10^{-19} C Q2 is the same charge on the other proton r is the distance between the protons F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2 F = 2.304 x 10^{-22} N We can use the force to find the acceleration. F = ma a = F / m a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg) a = 1.38 x 10^5 m/s^2 The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
8 0
3 years ago
A car moves in a circular motion and it is subject to a centripetal acceleration of 24 m/s2. If the radius of the circular path
Softa [21]

Answer:

Explanation:

Centripetal acceleration is given by:

a_{c} = v^{2}/r

Thus, centripetal acceleration is inversely proportional to the radius. Thus, when radius will double, the centripetal acceleration will be halved.

3 0
3 years ago
Other questions:
  • With a diameter that's 11 times larger than Earth's, _______ is the largest planet.
    13·2 answers
  • True or false : In crystalline solids the particles are not arranged in a regular pattern
    14·2 answers
  • Which planet has a density that is less than the density of liquid water?
    15·1 answer
  • Alloys are mixtures of ________.
    9·2 answers
  • The radius of Earth is about 6450 km. A 7070 N spacecraft travels away from Earth. What is the weight of the spacecraft at a hei
    7·1 answer
  • Which element would have properties most similar to those of fluorine (F) ?
    11·2 answers
  • A lamina occupies the part of the disk x2 + y2 ≤ 49 in the first quadrant. Find the center of mass of the lamina if the density
    5·1 answer
  • If a boy rides his bicycle 100 meters in 20 seconds to the end of the street how fast did he ride his bike
    10·1 answer
  • A) A 12 kg object has a velocity of 37.5 m/s. What is its momentum?
    5·1 answer
  • Jupiter, the largest planet in the solar system, has an equatorial radius of about 7.1 x 10^4km (more than 10 times that of Eart
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!