Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Answer:
i think D I hope this helps!!!!
Blood pressure is greater in feet because of gravity
It is about 100oC at a pressure of 1.1 atmosphere. Hope this helps.
Answer:
The time taken to stop the box equals 1.33 seconds.
Explanation:
Since frictional force always acts opposite to the motion of the box we can find the acceleration that the force produces using newton's second law of motion as shown below:

Given mass of box = 5.0 kg
Frictional force = 30 N
thus

Now to find the time that the box requires to stop can be calculated by first equation of kinematics
The box will stop when it's final velocity becomes zero

Here acceleration is taken as negative since it opposes the motion of the box since frictional force always opposes motion.