Locations X and Y are at the poles. Hope this helps!
Answer:
Planet will crash on to the Sun if the tangential velocity becomes zero and Rocket should be fired from Earth's orbit is at 30 m/s and in opposite direction to the Earth orbits the Sun
Explanation:
The orbital velocity of the Earth about the sun is 30 km/s. If we shoot a rocket with 30 km/s with respect to Earth in the opposite direction. Then the two velocity vectors cancel. The resultant velocity would be zero with respect to the Sun. resulting velocity is called as tangential velocity.
Planet will crash on to the Sun if the tangential velocity becomes zero and Rocket should be fired from Earth's orbit is at 30 m/s and in opposite direction to the Earth orbits the Sun
A person with antisocial personality disorder typically must be older than the age of 18 years and have shown some evidence of a conduct disorder. This is true statement.
<h3>What is antisocial personality disorder?</h3>
All 10 personality disorders are categorized into three clusters by the Diagnostic and Statistical Manual of Mental Disorders (DSM 5) (A, B, and C). One of the four cluster-B disorders, which also includes borderline, narcissistic, and histrionic disorders, is antisocial personality disorder.
Dramatic, emotional, and erratic relationships with people are common symptoms of all of these diseases. The only personality condition that cannot be diagnosed in childhood is antisocial personality disorder. To meet the diagnostic criteria for ASPD before the age of 18, the patient must have previously received a conduct disorder (CD) diagnosis by the time he or she became 15 years old.
Learn more about antisocial personality disorder here:
brainly.com/question/4031840
#SPJ1
Answer:
3.085 [m].
Explanation:
1) The rule:
m₁*g*l₁=m₂*g*l₂, where m₁ and l₁ - the mass and distance for the small child, m₂ and l₂ - for the big child;
2) according to the condigion l₁+l₂=5, then
3) it is possible to make up the system:

4) finally, l₁=145/47≈3.085 [m].
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change