Answer:
C, when the ball lands it will have the least amount potential energy.
Explanation:
here is a picture that should help you.
Answer:
The mass of
4.6
×
10
24
atoms of silver is approximately 820 g.
Explanation:
In order to determine the mass of a given number of atoms of an element, identify the equalities between moles of the element and atoms of the element, and between moles of the element and its molar mass.
1
mole atoms Ag=6.022xx10
23
atoms Ag
Molar mass of Ag =#"107.87 g/mol"#
Multiply the given atoms of silver by
1
mol Ag
6.022
×
23
atoms Ag
. Then multiply times the molar mass of silver.
4.6
×
10
24
atoms Ag
×
1
mol Ag
6.022
×
10
23
atoms Ag
×
107.87
g Ag
1
mol Ag
=
820 g Ag
Answer:
The atom will have a negative charge.
Explanation:
Electrons are subatomic particles with a negative charge, protons are subatomic particles with a negative charge, and neutrons have no charge. When a neutral atom's balance is disrupted by an extra electron, the atom becomes negatively charged.
Answer:
T2 = 260 K
Explanation:
<em>Given data:</em>
P1 = 150.0 k Pa
T1 = (-23+ 273.15) K = 250.15 K
V1 = 1.75 L
P2 = 210.0 kPa
V2 = 1.30 L
<em>To find:</em>
T2 = ?
<em>Formula:</em>


<em>Calculation:</em>
T2 = (210.0 kPa) x (1.30 L) x (250.15 K) / (150.0 kPa) x (1.75 L)
T2 = 260 K