To solve this problem we will apply the concepts related to energy conservation. With this we will find the speed before the impact. Through the kinematic equations of linear motion we will find the velocity after the impact.
Since the momentum is given as the product between mass and velocity difference, we will proceed with the velocities found to calculate it.
Part A) Conservation of the energy





Part B) Kinematic equation of linear motion,

Here
v= 0 Because at 1.5m reaches highest point, so v=0


Therefore the velocity after the collision with the floor is 3.7m/s
PART C) Total change of impulse is given as,





Yes, C is correct. It self explains itself as we know light travels through a vacuum ( doesn't need a medium) and light is a type of electromagnetic wave.
Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J
Answer:
E(final)/E(initial)=2
Explanation:
Applying the law of gauss to two parallel plates with charge density equal σ:

So, if the charge is doubled the Electric field is doubled too
E(final)/E(initial)=2