Answer:
The metal coil of the slinky
Explanation:
The wave travels on the actual slinky which we see deforming as the wave goes through.
Answer:
The kinetic energy of the bullet is 5.4 × 10³ J
Explanation:
Hi there!
The equation of kinetic energy is the following:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the bullet.
v = speed of the bullet.
Let´s convert the mass unit to kg so that our result is in Joules:
64 g · ( 1 kg / 1000 g) = 0.064 kg
Then, the kinetic energy will be the following:
KE = 1/2 · 0.064 kg · (411 m/s)²
KE = 5.4 × 10³ J
The answer is <span>C. 49 m/s
The kinetic equation is:
v2 = v1 + a * t
v1 - initial velocity
v2 - final velocity
a - gravitational acceleration
t - time
We know:
v2 = ?
v1 = 0 (in free fall
a = 9.8 m/s
t = 5
</span>v2 = v1 + a * t
v2 = 0 + 9.8 * 5
v2 = 0 + 49
v2 = 49 m/s
The answer to your question is "20kgx9.8m/s" because weight is the force an object is exerting on another object, and the formula used to calculate force is <em>Force = Mass * Acceleration</em>.
Answer: 500 Watts
Explanation:
Power
is the speed with which work
is done. Its unit is Watts (
), being
.
Power is mathematically expressed as:
(1)
Where
is the time during which work
is performed.
On the other hand, the Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path. It is a scalar magnitude, and its unit in the International System of Units is the Joule (like energy). Therefore, 1 Joule is the work done by a force of 1 Newton when moving an object, in the direction of the force, along 1 meter (
).
When the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(2)
In this case, we have the following data:



So, let's calculate the work done by Peter and then find how much power is involved:
From (2):
(3)
(4)
Substituting (4) in (1):
(5)
Finally: