1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
3 years ago
12

How long will it take a shell fired from a cliff at an initial velocity of 800 m/s at an angle 30 degrees below the horizontal t

o reach the ground 150m below?
Physics
1 answer:
Ksju [112]3 years ago
6 0
<span>0.373 seconds. First, calculate the initial vertical velocity of the shell. 800sin(30) = 800*0.5 = 400 m/s Now the formula for the distance traveled is d = 400 m/s * T + 0.5A T^2 Substituting known values gives. 150 = 400 m/s * T + 0.5*9.80m/s^2 T^2 150 = 400 m/s * T + 4.9 m/s^2 T^2 Arrange as a quadratic formula 0 = 400 m/s * T + 4.9 m/s^2 T^2 - 150 4.9 m/s^2 T^2 + 400 m/s * T - 150 = 0 Now solve for T using the quadratic formula with a=4.9, b=400, and c=-150 The calculated value is 0.373 seconds. Is this value reasonable? Let's check. The initial downward velocity is 400 m/s. So 150/400 = 0.375 seconds. Since the actual time will be a bit less due to acceleration by gravity and since the total time is so short, there won't be much acceleration due to gravity, the value of 0.373 is quite reasonable.</span>
You might be interested in
When a 0.622 kg basketball hits the floor, its velocity changes from 4.23 m/s down to 3.85 m/s up. If the ball was in contact wi
SVEN [57.7K]

when the ball hits the floor and bounces back the momentum of the ball changes.

the rate of change of momentum is the force exerted by the floor on it.

the equation for the force exerted is

f = rate of change of momentum

f = \frac{mv - mu}{t}

v is the final velocity which is - 3.85 m/s

u is initial velocity - 4.23 m/s

m = 0.622 kg

time is the impact time of the ball in contact with the floor - 0.0266 s

substituting the values

f = \frac{0.622 kg (3.85 m/s - (-)4.23 m/s)}{0.0266}

since the ball is going down, we take that as negative and ball going upwards as positive.

f = 189 N

the force exerted from the floor is 189 N

4 0
3 years ago
The electric field between square the plates of a parallel-plate capacitor has magnitude E. The potential across the plates is m
Helga [31]

Answer:

The magnitude of the electric field between the plates is half its initial value.

Explanation:

We know the electric field E = V/d where V = voltage applied and d = separation between plates.

Since V is constant and V = Ed,

So, E₁d₁ = E₂d₂ where E₁ = initial electric field at separation d₁, d₁ = initial separation of plates, E₂ = final electric field at separation d₂ and d₂ = final separation of plates.

So, E₂ = E₁d₁/d₂

Now, the distance between the plates is twice their original separation. Thus, d₂ = 2d₁

So, E₂ = E₁d₁/2d₁ = E₁/2

So, E₂ = E₁/2

Thus, the magnitude of the electric field between the plates is half its initial value.

5 0
3 years ago
irius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Ano
Norma-Jean [14]

The actual distance of Regulus from Earth is 23.81 parsecs.

Given:

Parallax of Regulus, p = 0.042 arc seconds

Calculation:

When an observer changes their position, an apparent change in the object's position takes place. This change can be calculated using the angle ( or semi-angle) made by the observer and object i.e. the angle made between the two lines of observation from the object to the observer.

Thus from the relation of parallax of a celestial body we get:

S = 1/ tan p ≈ 1 / p

where S is the actual distance between the object and the observer

            p is the parallax angle observed

Here for Regulus, we get:

S = 1 / p

  = 1 / (0.042)                                     [ 1 parsecs = 1 arcseconds ]

  = 23.81 parsecs

We know that,

1 parsecs = 3.26 light-years = 206,000 AU

Converting the actual distance into light years we get:

23.81 parsecs = 23.81 × (3.26 light yrs) = 77.658 light-years

Therefore, the actual distance of Regulus from Earth is 23.81 parsecs which is 77.658 in light years.

Learn more about astronomical units here:

<u>brainly.com/question/16471213</u>

#SPJ4

6 0
1 year ago
Weight is proportional to but not equal to mass. In which of the following situations would a person show an increase in weight
meriva

Answer: c living in a camber in an under water habitat

Explanation:

4 0
2 years ago
Which of the following energies defines energy stored inside a spring?
Leya [2.2K]

Answer:

Elastic potential energy

7 0
2 years ago
Other questions:
  • For every action there is an equal and opposite reaction. What does these words mean in physics?
    14·1 answer
  • Emir is standing in a treehouse and looking down at a swingset in the yard next door. The angle of depression from Emir's eyelin
    10·2 answers
  • Which one of the following statements is not a characteristic of a plane mirror?
    6·1 answer
  • How do speed and velocity differ
    6·1 answer
  • A student's pencil rolls off a desk and lands 0.47 m away from the edge of the
    15·1 answer
  • Select all the correct answers.
    10·2 answers
  • A solid sphere is placed on a frictionless floor in a very long corridor and is given a quick push so that it begins to slide, w
    6·1 answer
  • Which wave has a longer period and how many times, the wave with a frequency of 7000Hz or the wave with a frequency of 21.000Hz?
    11·1 answer
  • HELP PLEASE 20 ;OINTS
    15·1 answer
  • what evidence would you expect to find on the moon if it had been subjected to plate tectonics? (select all that apply.)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!