1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
13

Free points to those who rate this 5 stars and answer "Done". I don't think it lets more than 2 people answer so I guess the fir

st 2 people who answer, get the points.
Physics
2 answers:
chubhunter [2.5K]3 years ago
8 0

Answer:

how do i rate it 5 stars?

Explanation:

Zielflug [23.3K]3 years ago
8 0

Answer:

done

Explanation:

You might be interested in
2. Find the velocity when the displacement is 40 m and the time is 5 s.
LenKa [72]

Answer:

V=?

S= 40m

t=5s

V=S/t

V=40/5

V=8m/s

3 0
3 years ago
1) Andrea and Chuck are riding on a merry-go-round. Andrea rides on a horse at the outer rim of the circular platform, twice as
telo118 [61]

Explanation:

The tangential speed of Andrea is given by :

v=r\omega

Where

r is radius of the circular path

ω is angular speed

The merry-go-round is rotating at a constant angular speed. Let the new distance from the center of the circular platform is r'

r' = 2r

New angular speed,

v'=r'\omega'\\\\v'=(2r)\omega\\\\v'=2r\omega\\\\v'=2v

New angular speed is twice that of the Chuck's speed.

8 0
3 years ago
A wheelchair ramp is 5.2 m long and 0.8 m high. Calculate the ramp’s mechanical advantage
Arlecino [84]

Answer:

5

Explanation:

62

3 0
3 years ago
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
Dr. Kirwan is preparing a slide show that he will present to the executive board at tonight's committee meeting. He places a 3.5
lisov135 [29]

Answer:

A) d_o = 20.7 cm

B) h_i = 1.014 m

Explanation:

A) To solve this, we will use the lens equation formula;

1/f = 1/d_o + 1/d_i

Where;

f is focal Length = 20 cm = 0.2

d_o is object distance

d_i is image distance = 6m

1/0.2 = 1/d_o + 1/6

1/d_o = 1/0.2 - 1/6

1/d_o = 4.8333

d_o = 1/4.8333

d_o = 0.207 m

d_o = 20.7 cm

B) to solve this, we will use the magnification equation;

M = h_i/h_o = d_i/d_o

Where;

h_o = 3.5 cm = 0.035 m

d_i = 6 m

d_o = 20.7 cm = 0.207 m

Thus;

h_i = (6/0.207) × 0.035

h_i = 1.014 m

8 0
3 years ago
Other questions:
  • You're going 70mph, how long does it take to go 70 miles
    13·1 answer
  • An object with a mass of 21 kilograms is lifted through a distance of 7 meters how much work is done
    15·1 answer
  • PLEASE HELP!! WILLING TO GIVE 20 POINTS!
    14·1 answer
  • A pole-vaulter converts the kinetic energy of running to elastic potential energy in the pole, which is then converted to gravit
    12·1 answer
  • Do y’all know what A is?! I really need help!
    5·1 answer
  • 9.00 V is applied to a wire with a resistance of 52.0 ohm. At what distance from the wire is the magnetic field 2.22x 10^-8 T?
    15·1 answer
  • An irrigation canal has a rectangular cross section. At one point where the canal is 18.2 m wide and the water is 3.55 m deep, t
    8·1 answer
  • An 6 kg object accelerating from 17 m/s to 10 m/s. What is the change in momentum of the object?
    13·1 answer
  • How does weathering, erosion and deposition shape the Earth and contribute to the rock cycle? Weathering, erosion and deposition
    15·1 answer
  • How deep under water would you need to be in order to be at double atomosphric pressure​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!