Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Answer:
i believe the answer would be fault lines
Explanation:
Answer:
a)this graph is also a line b) in both cases we have a uniform movement
Explanation:
In this exercise we have a uniform movement
v = d / t
d = v t
in the table we give some values to make the graph
t (s) d (m)
1 10
2 20
3 30
In the attached we can see the graph that is a straight line
we have another vehicle at v = 50 me / S
t (s) d (m)
1 50
2 100
3 150
this graph is also a line
b) in both cases we have a uniform movement
The solar system is smaller than a galaxy. Galaxies are composed of solar systems. The solar system is composed of planets revolving around a star (such as our sun). To put into perspective, there are about hundreds of billions of stars in our galaxy (the milky way). On the other hand, billions of galaxies make up the universe.
The speed of light is constant which is 299 792 458 m / s. The time is taken for light to reach an object can be used to measure the distance between objects in space. This is done by multiplying the time by the speed of light.
Distance in space is so vast and therefore impractical to use the basic SI units of meters and kilometers we use here on earth. Therefore the use of astronomical units and light years is used. Light years is the distance that light can cover in a year in the vacuum of space, while astronomical units is the distance between solar systems.
Answer:
61.4 s
Explanation:
The distance d₁ traveled by the asteroid:

The distance d₂ traveled by the space ship:

The total distance d:

Solving for time t:
