Answer:
V = 6.17 L
Explanation:
Given data:
Volume = ?
Number of moles = 0.382 mol
Pressure = 1.50 atm
Temperature = 295 k
R = 0.0821 L. atm. /mol. k
Solution:
According to ideal gas equation:
PV= nRT
V = nRT/P
V = 0.382 mol × 0.0821 L. atm. /mol. k ×295 k / 1.50 atm
V = 9.252 L. atm. / 1.50 atm
V = 6.17 L
Answer:
C.
Fusion reactions require a lot of heat and pressure
Explanation:
nuclear fusion takes place only at extremely high temperatures. That's because a great deal of energy is needed to overcome the force of repulsion between the positively charged nuclei. ... A: Nuclear fusion doesn't occur naturally on Earth because it requires temperatures far higher than Earth temperatures.
The molecular formula of chlorofluorocarbon is CF₂Cl₂
Molecular mass of CF₂Cl₂ is 120.9 g/mol
Mass of Cl in 1 mol - 2 x 35.5 = 71 g/mol
in 120.9 g of compound - 71 g of Cl
Therefore in 38 g of sample - 71/120.9 x 38 g of Cl
Mass of Cl in 38 g - 22.31 g of Cl
Answer:
Organic evolution is the theory that more recent types of plants and animals have their origins in other pre-existing forms and that the distinguishable differences between ancestors and descendents are due to modifications in successive generations.
Explanation:
<u>Answer:</u> The balanced chemical equation is written below and
for the reaction is -160.6 J/K
<u>Explanation:</u>
When calcium hydroxide reacts with sulfur dioxide, it leads to the formation of calcium sulfate and water molecule.
The chemical equation for the reaction of calcium hydroxide and sulfur dioxide follows:

To calculate the entropy change of the reaction, we use the equation:
![\Delta S^o_{rxn}=\sum [n\times \Delta S^o_{products}]-\sum [n\times \Delta S^o_{reactants}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_%7Bproducts%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_%7Breactants%7D%5D)
For the given reaction:
![\Delta S^o_{rxn}=[(1\times \Delta S^o_{CaSO_3(s)})+(1\times \Delta S^o_{H_2O(l)})]-[(1\times \Delta S^o_{Ca(OH)_2(s)})+(1\times \Delta S^o_{SO_2(g)})]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7BCaSO_3%28s%29%7D%29%2B%281%5Ctimes%20%5CDelta%20S%5Eo_%7BH_2O%28l%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7BCa%28OH%29_2%28s%29%7D%29%2B%281%5Ctimes%20%5CDelta%20S%5Eo_%7BSO_2%28g%29%7D%29%5D)
Taking the standard entropy change values:

Putting values in above equation, we get:
![\Delta S^o_{rxn}=[(1\times (101.4))+(1\times (69.9))]-[(1\times (83.4))+(1\times (248.5))]\\\\\Delta S^o_{rxn}=-160.6J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28101.4%29%29%2B%281%5Ctimes%20%2869.9%29%29%5D-%5B%281%5Ctimes%20%2883.4%29%29%2B%281%5Ctimes%20%28248.5%29%29%5D%5C%5C%5C%5C%5CDelta%20S%5Eo_%7Brxn%7D%3D-160.6J%2FK)
Hence, the balanced chemical equation is written above and
for the reaction is -160.6 J/K