Answer:
Superscript 239 subscript 94 upper P u
(plutonium-239)
Explanation:
In alpha decay, the element subtracts 4 from its mass number and subtracts 2 from its atomic number.
So if we end with Uranium-235, which has an atomic number of 92:
235+4 = 239
92+2 = 94
Element 94 is Pu, plutonium, and its mass could very well be 239 if it's an isotope. So the answer is Superscript 239 subscript 94 upper P u.
The alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
<h3>What are the properties of alkali metals?</h3>
The alkali metals have the high thermal and electrical conductivity. It has high lustre, ductility, and malleability as compared to other materials. Each alkali metal atom has one electron in its outermost shell which make more reactive.
So we can conclude that the alkali metals can't exist alone in nature because of incomplete outermost shell of alkali metals.
Learn more about metal here: brainly.com/question/25597694
#SPJ1
The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4