<h3>
Answer:</h3>
The root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
<h3>
Solution and Explanation:</h3>
- To find how fast molecules or particles of gases move at a particular temperature, the root mean square speed is calculated.
- Root mean square speed of a gas is calculated by using the formula;

Where R is the molar gas constant, T is the temperature and M is the molar mass of gas in Kg.
<h3>Step 1: Root mean square speed from O₂</h3>
Molar mass of Oxygen is 32.0 g/mol or 0.032 kg/mol
Temperature = 65 degrees Celsius or 338 K
Molar gas constant = 8.3145 J/k.mol


<h3>
Step 2: Root mean square speed of UF₆ </h3>
The molar mass of UF₆ is 352 g/mol or 0.352 kg/mol


Therefore; the root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
I belive it is synaptic cleft
<span>density = mass / volume
given the quotient , we have density and mass, volume can be easily calculated as:
volume = mass / p =15.5 g / 0.789 g/cm^3
=~ 20 cm^3 (dimension ally constant)</span>
Velocity is said to be constant if its magnitude as well direction at any instant is remains the same. In D, if you draw a line parallel to y-axis at any time t, you can see that velocity is same. Hence, D is the correct graph.
The kinetic energy of gaseous molecules is greater than that of liquid molecules. Therefore, in gas, kinetic energy overcomes the force of attraction between molecules. In short, in gas phase, particles move at high speed and hence they have less force of attraction. In case of liquid phase, particles are close enough as a result there is much more force of attraction compared to gaseous molecules. In liquid state, kinetic energy cannot overcome force of attraction therefore, liquid molecules slow down.
Therefore, B is the correct answer.
In an unknown liquid, the percentage composition with respect to carbon, hydrogen and iodine is 34.31%, 5.28% and 60.41% respectively.
Let the mass of liquid be 100 g thus, mass of carbon, hydrogen and oxygen will be 34.31 g, 5.28 g and 60.41 g respectively.
To calculate molecular formula of compound, convert mass into number of moles as follows:

Molar mass of carbon, hydrogen and iodine is 12 g/mol, 1 g/mol and 126.90 g/mol.
Taking the ratio:

Putting the values,

Thus, molecular formula of compound will be
.