The electrons will move more rapidly resulting in a higher pressure even at a consistent volume
Answer:
168.0 g
Explanation:
First thing, write a balanced chemical equation:

n(H2SO4) = concentration * volume
= 1.0 M * 2.0 L
= 2.0 mol
According to the balanced equation, 1 mol of acid requires 2 mol of sodium bicarbonate. This means that 2 mol of acid requires 2 mol of sodium bicarbonate. What mass of sodium bicarbonate is this?
mass (NaHCO3) = number of moles * molar mass
= 2.0 mol * 84.0065 g/mol
= 168.0 g
Answer:
The formation of large molecules from small repeating units is known as <u>Condensation</u> reactions.
Explanation:
Those reactions in which two molecules join together with a elimination of small neutral molecule like H₂O, CH₃OH, HCl e.t.c are known as condensation reactions.
Polymerization reactions are those reactions in which small molecules called as monomers join together to form a large molecule also known as polymers. These reactions are done via different mechanisms among which one is the condensation reaction.
Example:
Proteins (polymer) are made up of amino acids (monomers) through condensation reaction as,
n H₂N-RH-COOH → H₂N-[-RH]n-COOH + n H₂O
In above equation "n" represent large number, H₂N-RH-COOH represent amino acid (monomer) and H₂N-[-RH]n-COOH represent protein (polymer). While, the H₂O eliminated is the small neutral molecule.
The reaction equation is first order with respect to [H+]
when PH1 = -㏒[H+]1 so, when PH = 6
So by substitution:
∴ 6 = -㏒[H+]1
∴[H+]1 = 1 x 10^-6
and when PH2 = -㏒[H+]2 so, when PH2 = 2
so by substitution:
∴ 2 = -㏒[H]2
∴[H]2 = 1 x 10^-2
So the rate of reaction changes by the factor of:
[H2]2/[H]1 = (1 x 10^-2) / (1 x 10^-6) = 10000
It is 10000 times faster when PH decreases from 6 to 2
Answer:
Is that all of the problem??
Explanation: